from transformers import pipeline import gradio as gr # Load spam detection model pipeline classifier = pipeline("text-classification", model="mrm8488/bert-tiny-finetuned-sms-spam-detection") # Define the prediction function def predict_spam(text): result = classifier(text)[0] label = result['label'] confidence = round(result['score'] * 100, 2) return f"Prediction: {label}\nConfidence: {confidence}%" # Gradio interface gr.Interface( fn=predict_spam, inputs=gr.Textbox(lines=4, placeholder="Enter a message..."), outputs="text", title="Spam Detector", description="Enter a message to check if it's spam or not using a pretrained BERT model.", examples=["Win a free iPhone now!", "Hey, are we still on for dinner tonight?"] ).launch()