Spaces:
Runtime error
Runtime error
| # #!/usr/bin/env python3 | |
| # | |
| # import argparse | |
| # import os | |
| # import time | |
| # import numpy as np | |
| # import nvidia_smi | |
| # import psutil | |
| # import torch | |
| # | |
| # from model_manager import ModelManager | |
| # from schema import Config, HDStrategy, SDSampler | |
| # | |
| # try: | |
| # torch._C._jit_override_can_fuse_on_cpu(False) | |
| # torch._C._jit_override_can_fuse_on_gpu(False) | |
| # torch._C._jit_set_texpr_fuser_enabled(False) | |
| # torch._C._jit_set_nvfuser_enabled(False) | |
| # except: | |
| # pass | |
| # | |
| # NUM_THREADS = str(4) | |
| # | |
| # os.environ["OMP_NUM_THREADS"] = NUM_THREADS | |
| # os.environ["OPENBLAS_NUM_THREADS"] = NUM_THREADS | |
| # os.environ["MKL_NUM_THREADS"] = NUM_THREADS | |
| # os.environ["VECLIB_MAXIMUM_THREADS"] = NUM_THREADS | |
| # os.environ["NUMEXPR_NUM_THREADS"] = NUM_THREADS | |
| # if os.environ.get("CACHE_DIR"): | |
| # os.environ["TORCH_HOME"] = os.environ["CACHE_DIR"] | |
| # | |
| # | |
| # def run_model(model, size): | |
| # # RGB | |
| # image = np.random.randint(0, 256, (size[0], size[1], 3)).astype(np.uint8) | |
| # mask = np.random.randint(0, 255, size).astype(np.uint8) | |
| # | |
| # config = Config( | |
| # ldm_steps=2, | |
| # hd_strategy=HDStrategy.ORIGINAL, | |
| # hd_strategy_crop_margin=128, | |
| # hd_strategy_crop_trigger_size=128, | |
| # hd_strategy_resize_limit=128, | |
| # prompt="a fox is sitting on a bench", | |
| # sd_steps=5, | |
| # sd_sampler=SDSampler.ddim | |
| # ) | |
| # model(image, mask, config) | |
| # | |
| # | |
| # def benchmark(model, times: int, empty_cache: bool): | |
| # sizes = [(512, 512)] | |
| # | |
| # nvidia_smi.nvmlInit() | |
| # device_id = 0 | |
| # handle = nvidia_smi.nvmlDeviceGetHandleByIndex(device_id) | |
| # | |
| # def format(metrics): | |
| # return f"{np.mean(metrics):.2f} ± {np.std(metrics):.2f}" | |
| # | |
| # process = psutil.Process(os.getpid()) | |
| # # 每个 size 给出显存和内存占用的指标 | |
| # for size in sizes: | |
| # torch.cuda.empty_cache() | |
| # time_metrics = [] | |
| # cpu_metrics = [] | |
| # memory_metrics = [] | |
| # gpu_memory_metrics = [] | |
| # for _ in range(times): | |
| # start = time.time() | |
| # run_model(model, size) | |
| # torch.cuda.synchronize() | |
| # | |
| # # cpu_metrics.append(process.cpu_percent()) | |
| # time_metrics.append((time.time() - start) * 1000) | |
| # memory_metrics.append(process.memory_info().rss / 1024 / 1024) | |
| # gpu_memory_metrics.append(nvidia_smi.nvmlDeviceGetMemoryInfo(handle).used / 1024 / 1024) | |
| # | |
| # print(f"size: {size}".center(80, "-")) | |
| # # print(f"cpu: {format(cpu_metrics)}") | |
| # print(f"latency: {format(time_metrics)}ms") | |
| # print(f"memory: {format(memory_metrics)} MB") | |
| # print(f"gpu memory: {format(gpu_memory_metrics)} MB") | |
| # | |
| # nvidia_smi.nvmlShutdown() | |
| # | |
| # | |
| # def get_args_parser(): | |
| # parser = argparse.ArgumentParser() | |
| # parser.add_argument("--name") | |
| # parser.add_argument("--device", default="cuda", type=str) | |
| # parser.add_argument("--times", default=10, type=int) | |
| # parser.add_argument("--empty-cache", action="store_true") | |
| # return parser.parse_args() | |
| # | |
| # | |
| # if __name__ == "__main__": | |
| # args = get_args_parser() | |
| # device = torch.device(args.device) | |
| # model = ModelManager( | |
| # name=args.name, | |
| # device=device, | |
| # sd_run_local=True, | |
| # disable_nsfw=True, | |
| # sd_cpu_textencoder=True, | |
| # hf_access_token="123" | |
| # ) | |
| # benchmark(model, args.times, args.empty_cache) | |