Spaces:
Runtime error
Runtime error
| import random | |
| import PIL.Image | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from diffusers import ( | |
| PNDMScheduler, | |
| DDIMScheduler, | |
| LMSDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| DPMSolverMultistepScheduler, | |
| ) | |
| from loguru import logger | |
| from model.base import DiffusionInpaintModel | |
| from model.utils import torch_gc, set_seed | |
| from schema import Config, SDSampler | |
| class CPUTextEncoderWrapper: | |
| def __init__(self, text_encoder, torch_dtype): | |
| self.config = text_encoder.config | |
| self.text_encoder = text_encoder.to(torch.device("cpu"), non_blocking=True) | |
| self.text_encoder = self.text_encoder.to(torch.float32, non_blocking=True) | |
| self.torch_dtype = torch_dtype | |
| del text_encoder | |
| torch_gc() | |
| def __call__(self, x, **kwargs): | |
| input_device = x.device | |
| return [ | |
| self.text_encoder(x.to(self.text_encoder.device), **kwargs)[0] | |
| .to(input_device) | |
| .to(self.torch_dtype) | |
| ] | |
| def dtype(self): | |
| return self.torch_dtype | |
| class SD(DiffusionInpaintModel): | |
| pad_mod = 8 | |
| min_size = 512 | |
| def init_model(self, device: torch.device, **kwargs): | |
| from diffusers.pipelines.stable_diffusion import StableDiffusionInpaintPipeline | |
| fp16 = not kwargs.get("no_half", False) | |
| model_kwargs = { | |
| "local_files_only": kwargs.get("local_files_only", kwargs["sd_run_local"]) | |
| } | |
| if kwargs["disable_nsfw"] or kwargs.get("cpu_offload", False): | |
| logger.info("Disable Stable Diffusion Model NSFW checker") | |
| model_kwargs.update( | |
| dict( | |
| safety_checker=None, | |
| feature_extractor=None, | |
| requires_safety_checker=False, | |
| ) | |
| ) | |
| use_gpu = device == torch.device("cuda") and torch.cuda.is_available() | |
| torch_dtype = torch.float16 if use_gpu and fp16 else torch.float32 | |
| self.model = StableDiffusionInpaintPipeline.from_pretrained( | |
| self.model_id_or_path, | |
| revision="fp16" if use_gpu and fp16 else "main", | |
| torch_dtype=torch_dtype, | |
| use_auth_token=kwargs["hf_access_token"], | |
| **model_kwargs | |
| ) | |
| # https://huggingface.co/docs/diffusers/v0.7.0/en/api/pipelines/stable_diffusion#diffusers.StableDiffusionInpaintPipeline.enable_attention_slicing | |
| self.model.enable_attention_slicing() | |
| # https://huggingface.co/docs/diffusers/v0.7.0/en/optimization/fp16#memory-efficient-attention | |
| if kwargs.get("enable_xformers", False): | |
| self.model.enable_xformers_memory_efficient_attention() | |
| if kwargs.get("cpu_offload", False) and use_gpu: | |
| # TODO: gpu_id | |
| logger.info("Enable sequential cpu offload") | |
| self.model.enable_sequential_cpu_offload(gpu_id=0) | |
| else: | |
| self.model = self.model.to(device) | |
| if kwargs["sd_cpu_textencoder"]: | |
| logger.info("Run Stable Diffusion TextEncoder on CPU") | |
| self.model.text_encoder = CPUTextEncoderWrapper( | |
| self.model.text_encoder, torch_dtype | |
| ) | |
| self.callback = kwargs.pop("callback", None) | |
| def forward(self, image, mask, config: Config): | |
| """Input image and output image have same size | |
| image: [H, W, C] RGB | |
| mask: [H, W, 1] 255 means area to repaint | |
| return: BGR IMAGE | |
| """ | |
| scheduler_config = self.model.scheduler.config | |
| if config.sd_sampler == SDSampler.ddim: | |
| scheduler = DDIMScheduler.from_config(scheduler_config) | |
| elif config.sd_sampler == SDSampler.pndm: | |
| scheduler = PNDMScheduler.from_config(scheduler_config) | |
| elif config.sd_sampler == SDSampler.k_lms: | |
| scheduler = LMSDiscreteScheduler.from_config(scheduler_config) | |
| elif config.sd_sampler == SDSampler.k_euler: | |
| scheduler = EulerDiscreteScheduler.from_config(scheduler_config) | |
| elif config.sd_sampler == SDSampler.k_euler_a: | |
| scheduler = EulerAncestralDiscreteScheduler.from_config(scheduler_config) | |
| elif config.sd_sampler == SDSampler.dpm_plus_plus: | |
| scheduler = DPMSolverMultistepScheduler.from_config(scheduler_config) | |
| else: | |
| raise ValueError(config.sd_sampler) | |
| self.model.scheduler = scheduler | |
| if config.sd_mask_blur != 0: | |
| k = 2 * config.sd_mask_blur + 1 | |
| mask = cv2.GaussianBlur(mask, (k, k), 0)[:, :, np.newaxis] | |
| img_h, img_w = image.shape[:2] | |
| output = self.model( | |
| image=PIL.Image.fromarray(image), | |
| prompt=config.prompt, | |
| negative_prompt=config.negative_prompt, | |
| mask_image=PIL.Image.fromarray(mask[:, :, -1], mode="L"), | |
| num_inference_steps=config.sd_steps, | |
| guidance_scale=config.sd_guidance_scale, | |
| output_type="np.array", | |
| callback=self.callback, | |
| height=img_h, | |
| width=img_w, | |
| generator=torch.manual_seed(config.sd_seed), | |
| ).images[0] | |
| output = (output * 255).round().astype("uint8") | |
| output = cv2.cvtColor(output, cv2.COLOR_RGB2BGR) | |
| return output | |
| def forward_post_process(self, result, image, mask, config): | |
| if config.sd_match_histograms: | |
| result = self._match_histograms(result, image[:, :, ::-1], mask) | |
| if config.sd_mask_blur != 0: | |
| k = 2 * config.sd_mask_blur + 1 | |
| mask = cv2.GaussianBlur(mask, (k, k), 0) | |
| return result, image, mask | |
| def is_downloaded() -> bool: | |
| # model will be downloaded when app start, and can't switch in frontend settings | |
| return True | |
| class SD15(SD): | |
| name = "sd1.5" | |
| model_id_or_path = "runwayml/stable-diffusion-inpainting" | |
| class Anything4(SD): | |
| name = "anything4" | |
| model_id_or_path = "Sanster/anything-4.0-inpainting" | |
| class RealisticVision14(SD): | |
| name = "realisticVision1.4" | |
| model_id_or_path = "Sanster/Realistic_Vision_V1.4-inpainting" | |
| class SD2(SD): | |
| name = "sd2" | |
| model_id_or_path = "stabilityai/stable-diffusion-2-inpainting" | |