| import os, torch | |
| from kolors.pipelines.pipeline_stable_diffusion_xl_chatglm_256 import StableDiffusionXLPipeline | |
| from kolors.models.modeling_chatglm import ChatGLMModel | |
| from kolors.models.tokenization_chatglm import ChatGLMTokenizer | |
| from diffusers import UNet2DConditionModel, AutoencoderKL | |
| from diffusers import EulerDiscreteScheduler | |
| from peft import ( | |
| LoraConfig, | |
| PeftModel, | |
| ) | |
| def infer(prompt): | |
| ckpt_dir = "/path/base_model_path" | |
| lora_ckpt = 'trained_models/ktxl_dog_text/checkpoint-1000/' | |
| load_text_encoder = True | |
| text_encoder = ChatGLMModel.from_pretrained( | |
| f'{ckpt_dir}/text_encoder', | |
| torch_dtype=torch.float16).half() | |
| tokenizer = ChatGLMTokenizer.from_pretrained(f'{ckpt_dir}/text_encoder') | |
| vae = AutoencoderKL.from_pretrained(f"{ckpt_dir}/vae", revision=None).half() | |
| scheduler = EulerDiscreteScheduler.from_pretrained(f"{ckpt_dir}/scheduler") | |
| unet = UNet2DConditionModel.from_pretrained(f"{ckpt_dir}/unet", revision=None).half() | |
| pipe = StableDiffusionXLPipeline( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| tokenizer=tokenizer, | |
| unet=unet, | |
| scheduler=scheduler, | |
| force_zeros_for_empty_prompt=False) | |
| pipe = pipe.to("cuda") | |
| pipe.load_lora_weights(lora_ckpt, adapter_name="ktxl-lora") | |
| pipe.set_adapters(["ktxl-lora"], [0.8]) | |
| if load_text_encoder: | |
| pipe.text_encoder = PeftModel.from_pretrained(pipe.text_encoder, lora_ckpt) | |
| random_seed = 0 | |
| generator = torch.Generator(pipe.device).manual_seed(random_seed) | |
| neg_p = '' | |
| out = pipe(prompt, generator=generator, negative_prompt=neg_p, num_inference_steps=25, width=1024, height=1024, num_images_per_prompt=1, guidance_scale=5).images[0] | |
| out.save("ktxl_test_image.png") | |
| if __name__ == '__main__': | |
| import fire | |
| fire.Fire(infer) |