Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Revert "gradio 5.0.1"
Browse filesThis reverts commit eb9165873f432cad0d42ae70dd991d934d84790b.
README.md
CHANGED
|
@@ -4,7 +4,7 @@ emoji: πποΈ
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
-
sdk_version:
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: mit
|
|
|
|
| 4 |
colorFrom: red
|
| 5 |
colorTo: pink
|
| 6 |
sdk: gradio
|
| 7 |
+
sdk_version: 4.36.0
|
| 8 |
app_file: app.py
|
| 9 |
pinned: true
|
| 10 |
license: mit
|
app.py
CHANGED
|
@@ -2,18 +2,22 @@ import argparse
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
|
|
|
|
|
|
| 5 |
|
| 6 |
-
import gradio as gr
|
| 7 |
import librosa
|
| 8 |
import numpy as np
|
| 9 |
import torch
|
|
|
|
| 10 |
from torch import no_grad, LongTensor
|
| 11 |
-
|
| 12 |
import commons
|
| 13 |
import utils
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
from models import SynthesizerTrn
|
| 16 |
from text import text_to_sequence, _clean_text
|
|
|
|
| 17 |
|
| 18 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
| 19 |
|
|
@@ -55,6 +59,9 @@ def create_vc_fn(model, hps, speaker_ids):
|
|
| 55 |
if input_audio is None:
|
| 56 |
return "You need to upload an audio", None
|
| 57 |
sampling_rate, audio = input_audio
|
|
|
|
|
|
|
|
|
|
| 58 |
original_speaker_id = speaker_ids[original_speaker]
|
| 59 |
target_speaker_id = speaker_ids[target_speaker]
|
| 60 |
|
|
@@ -85,6 +92,9 @@ def create_soft_vc_fn(model, hps, speaker_ids):
|
|
| 85 |
if input_audio is None:
|
| 86 |
return "You need to upload an audio", None
|
| 87 |
sampling_rate, audio = input_audio
|
|
|
|
|
|
|
|
|
|
| 88 |
target_speaker_id = speaker_ids[target_speaker]
|
| 89 |
|
| 90 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
|
@@ -176,12 +186,12 @@ if __name__ == '__main__':
|
|
| 176 |
to_symbol_fn) in enumerate(models_tts):
|
| 177 |
with gr.TabItem(f"model{i}"):
|
| 178 |
with gr.Column():
|
| 179 |
-
cover_markdown = f"
|
| 184 |
-
tts_input1 = gr.TextArea(label="Text (150
|
| 185 |
elem_id=f"tts-input{i}")
|
| 186 |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
| 187 |
type="index", value=speakers[0])
|
|
@@ -227,7 +237,7 @@ if __name__ == '__main__':
|
|
| 227 |
with gr.Tabs():
|
| 228 |
for i, (name, author, cover_path, speakers, vc_fn) in enumerate(models_vc):
|
| 229 |
with gr.TabItem(f"model{i}"):
|
| 230 |
-
cover_markdown = f"
|
|
@@ -235,8 +245,7 @@ if __name__ == '__main__':
|
|
| 235 |
value=speakers[0])
|
| 236 |
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 237 |
value=speakers[min(len(speakers) - 1, 1)])
|
| 238 |
-
vc_input3 = gr.Audio(label="Input Audio"
|
| 239 |
-
max_length=30 if limitation else None)
|
| 240 |
vc_submit = gr.Button("Convert", variant="primary")
|
| 241 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 242 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"vc-audio{i}")
|
|
@@ -246,14 +255,13 @@ if __name__ == '__main__':
|
|
| 246 |
with gr.Tabs():
|
| 247 |
for i, (name, author, cover_path, speakers, soft_vc_fn) in enumerate(models_soft_vc):
|
| 248 |
with gr.TabItem(f"model{i}"):
|
| 249 |
-
cover_markdown = f"
|
| 253 |
vc_input1 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 254 |
value=speakers[0])
|
| 255 |
-
vc_input2 = gr.Audio(label="Input Audio"
|
| 256 |
-
max_length=30 if limitation else None)
|
| 257 |
vc_submit = gr.Button("Convert", variant="primary")
|
| 258 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 259 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"svc-audio{i}")
|
|
|
|
| 2 |
import json
|
| 3 |
import os
|
| 4 |
import re
|
| 5 |
+
import tempfile
|
| 6 |
+
from pathlib import Path
|
| 7 |
|
|
|
|
| 8 |
import librosa
|
| 9 |
import numpy as np
|
| 10 |
import torch
|
| 11 |
+
from gradio import FileData
|
| 12 |
from torch import no_grad, LongTensor
|
|
|
|
| 13 |
import commons
|
| 14 |
import utils
|
| 15 |
+
import gradio as gr
|
| 16 |
+
import gradio.utils as gr_utils
|
| 17 |
+
import gradio_client.utils as gr_processing_utils
|
| 18 |
from models import SynthesizerTrn
|
| 19 |
from text import text_to_sequence, _clean_text
|
| 20 |
+
from mel_processing import spectrogram_torch
|
| 21 |
|
| 22 |
limitation = os.getenv("SYSTEM") == "spaces" # limit text and audio length in huggingface spaces
|
| 23 |
|
|
|
|
| 59 |
if input_audio is None:
|
| 60 |
return "You need to upload an audio", None
|
| 61 |
sampling_rate, audio = input_audio
|
| 62 |
+
duration = audio.shape[0] / sampling_rate
|
| 63 |
+
if limitation and duration > 30:
|
| 64 |
+
return "Error: Audio is too long", None
|
| 65 |
original_speaker_id = speaker_ids[original_speaker]
|
| 66 |
target_speaker_id = speaker_ids[target_speaker]
|
| 67 |
|
|
|
|
| 92 |
if input_audio is None:
|
| 93 |
return "You need to upload an audio", None
|
| 94 |
sampling_rate, audio = input_audio
|
| 95 |
+
duration = audio.shape[0] / sampling_rate
|
| 96 |
+
if limitation and duration > 30:
|
| 97 |
+
return "Error: Audio is too long", None
|
| 98 |
target_speaker_id = speaker_ids[target_speaker]
|
| 99 |
|
| 100 |
audio = (audio / np.iinfo(audio.dtype).max).astype(np.float32)
|
|
|
|
| 186 |
to_symbol_fn) in enumerate(models_tts):
|
| 187 |
with gr.TabItem(f"model{i}"):
|
| 188 |
with gr.Column():
|
| 189 |
+
cover_markdown = f"\n\n" if cover_path else ""
|
| 190 |
gr.Markdown(f"## {name}\n\n"
|
| 191 |
f"{cover_markdown}"
|
| 192 |
f"model author: {author}\n\n"
|
| 193 |
f"language: {lang}")
|
| 194 |
+
tts_input1 = gr.TextArea(label="Text (150 words limitation)", value=example,
|
| 195 |
elem_id=f"tts-input{i}")
|
| 196 |
tts_input2 = gr.Dropdown(label="Speaker", choices=speakers,
|
| 197 |
type="index", value=speakers[0])
|
|
|
|
| 237 |
with gr.Tabs():
|
| 238 |
for i, (name, author, cover_path, speakers, vc_fn) in enumerate(models_vc):
|
| 239 |
with gr.TabItem(f"model{i}"):
|
| 240 |
+
cover_markdown = f"\n\n" if cover_path else ""
|
| 241 |
gr.Markdown(f"## {name}\n\n"
|
| 242 |
f"{cover_markdown}"
|
| 243 |
f"model author: {author}")
|
|
|
|
| 245 |
value=speakers[0])
|
| 246 |
vc_input2 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 247 |
value=speakers[min(len(speakers) - 1, 1)])
|
| 248 |
+
vc_input3 = gr.Audio(label="Input Audio (30s limitation)")
|
|
|
|
| 249 |
vc_submit = gr.Button("Convert", variant="primary")
|
| 250 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 251 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"vc-audio{i}")
|
|
|
|
| 255 |
with gr.Tabs():
|
| 256 |
for i, (name, author, cover_path, speakers, soft_vc_fn) in enumerate(models_soft_vc):
|
| 257 |
with gr.TabItem(f"model{i}"):
|
| 258 |
+
cover_markdown = f"\n\n" if cover_path else ""
|
| 259 |
gr.Markdown(f"## {name}\n\n"
|
| 260 |
f"{cover_markdown}"
|
| 261 |
f"model author: {author}")
|
| 262 |
vc_input1 = gr.Dropdown(label="Target Speaker", choices=speakers, type="index",
|
| 263 |
value=speakers[0])
|
| 264 |
+
vc_input2 = gr.Audio(label="Input Audio (30s limitation)")
|
|
|
|
| 265 |
vc_submit = gr.Button("Convert", variant="primary")
|
| 266 |
vc_output1 = gr.Textbox(label="Output Message")
|
| 267 |
vc_output2 = gr.Audio(label="Output Audio", elem_id=f"svc-audio{i}")
|