Spaces:
Runtime error
Runtime error
| #!/usr/bin/env python3 | |
| #coding:utf-8 | |
| import os | |
| import yaml | |
| import paddle | |
| import click | |
| import warnings | |
| warnings.simplefilter('ignore') | |
| from munch import Munch | |
| from starganv2vc_paddle.models import build_model | |
| from starganv2vc_paddle.Utils.ASR.models import ASRCNN | |
| from starganv2vc_paddle.Utils.JDC.model import JDCNet | |
| def main(config_path): | |
| config = yaml.safe_load(open(config_path)) | |
| # load ASR model | |
| ASR_config = config.get('ASR_config', False) | |
| with open(ASR_config) as f: | |
| ASR_config = yaml.safe_load(f) | |
| ASR_model_config = ASR_config['model_params'] | |
| ASR_model = ASRCNN(**ASR_model_config) | |
| _ = ASR_model.eval() | |
| # load F0 model | |
| F0_model = JDCNet(num_class=1, seq_len=192) | |
| _ = F0_model.eval() | |
| # build model | |
| _, model_ema = build_model(Munch(config['model_params']), F0_model, ASR_model) | |
| asr_input = paddle.randn([4, 80, 192]) | |
| print('ASR model input:', asr_input.shape, 'output:', ASR_model(asr_input).shape) | |
| mel_input = paddle.randn([4, 1, 192, 512]) | |
| print('F0 model input:', mel_input.shape, 'output:', [t.shape for t in F0_model(mel_input)]) | |
| _ = [v.eval() for v in model_ema.values()] | |
| label = paddle.to_tensor([0,1,2,3], dtype=paddle.int64) | |
| latent_dim = model_ema.mapping_network.shared[0].weight.shape[0] | |
| latent_style = paddle.randn([4, latent_dim]) | |
| ref = model_ema.mapping_network(latent_style, label) | |
| mel_input2 = paddle.randn([4, 1, 192, 512]) | |
| style_ref = model_ema.style_encoder(mel_input2, label) | |
| print('StyleGANv2-VC encoder inputs:', mel_input2.shape, 'output:', style_ref.shape, 'should has the same shape as the ref:', ref.shape) | |
| f0_feat = F0_model.get_feature_GAN(mel_input) | |
| out = model_ema.generator(mel_input, style_ref, F0=f0_feat) | |
| print('StyleGANv2-VC inputs:', label.shape, latent_style.shape, mel_input.shape, 'output:', out.shape) | |
| paddle.save({k: v.state_dict() for k, v in model_ema.items()}, 'test_arch.pd') | |
| file_size = os.path.getsize('test_arch.pd') / float(1024*1024) | |
| print(f'Main models occupied {file_size:.2f} MB') | |
| os.remove('test_arch.pd') | |
| return 0 | |
| if __name__=="__main__": | |
| main() | |