Upload 4 files
Browse files
README.md
CHANGED
|
@@ -1,13 +0,0 @@
|
|
| 1 |
-
---
|
| 2 |
-
title: Dataclysm
|
| 3 |
-
emoji: 🐠
|
| 4 |
-
colorFrom: purple
|
| 5 |
-
colorTo: yellow
|
| 6 |
-
sdk: streamlit
|
| 7 |
-
sdk_version: 1.30.0
|
| 8 |
-
app_file: app.py
|
| 9 |
-
pinned: false
|
| 10 |
-
license: apache-2.0
|
| 11 |
-
---
|
| 12 |
-
|
| 13 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.log
ADDED
|
File without changes
|
app.py
ADDED
|
@@ -0,0 +1,275 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Import necessary libraries
|
| 2 |
+
import streamlit as st
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import numpy as np
|
| 5 |
+
from sklearn.manifold import TSNE
|
| 6 |
+
from datasets import load_dataset, Dataset
|
| 7 |
+
from sklearn.cluster import KMeans
|
| 8 |
+
import plotly.graph_objects as go
|
| 9 |
+
import time
|
| 10 |
+
import logging
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Additional libraries for querying
|
| 14 |
+
from FlagEmbedding import FlagModel
|
| 15 |
+
|
| 16 |
+
# Global variables and dataset loading
|
| 17 |
+
global dataset_name
|
| 18 |
+
dataset_name = 'somewheresystems/dataclysm-arxiv'
|
| 19 |
+
st.session_state.dataclysm_arxiv = load_dataset(dataset_name, split="train")
|
| 20 |
+
total_samples = len(st.session_state.dataclysm_arxiv)
|
| 21 |
+
|
| 22 |
+
logging.basicConfig(filename='app.log', filemode='w', format='%(name)s - %(levelname)s - %(message)s', level=logging.INFO)
|
| 23 |
+
# Load the dataset once at the start
|
| 24 |
+
# Initialize the model for querying
|
| 25 |
+
model = FlagModel('BAAI/bge-small-en-v1.5', query_instruction_for_retrieval="Represent this sentence for searching relevant passages:", use_fp16=True)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
def load_data(num_samples):
|
| 29 |
+
start_time = time.time()
|
| 30 |
+
dataset_name = 'somewheresystems/dataclysm-arxiv'
|
| 31 |
+
# Load the dataset
|
| 32 |
+
logging.info(f'Loading dataset...')
|
| 33 |
+
dataset = load_dataset(dataset_name)
|
| 34 |
+
total_samples = len(dataset['train'])
|
| 35 |
+
|
| 36 |
+
logging.info('Converting to pandas dataframe...')
|
| 37 |
+
# Convert the dataset to a pandas DataFrame
|
| 38 |
+
df = dataset['train'].to_pandas()
|
| 39 |
+
|
| 40 |
+
# Adjust num_samples if it's more than the total number of samples
|
| 41 |
+
num_samples = min(num_samples, total_samples)
|
| 42 |
+
st.sidebar.text(f'Number of samples: {num_samples} ({num_samples / total_samples:.2%} of total)')
|
| 43 |
+
|
| 44 |
+
# Randomly sample the dataframe
|
| 45 |
+
df = df.sample(n=num_samples)
|
| 46 |
+
|
| 47 |
+
# Assuming 'embeddings' column contains the embeddings
|
| 48 |
+
embeddings = df['title_embedding'].tolist()
|
| 49 |
+
print("embeddings length: " + str(len(embeddings)))
|
| 50 |
+
|
| 51 |
+
# Convert list of lists to numpy array
|
| 52 |
+
embeddings = np.array(embeddings, dtype=object)
|
| 53 |
+
end_time = time.time() # End timing
|
| 54 |
+
st.sidebar.text(f'Data loading completed in {end_time - start_time:.3f} seconds')
|
| 55 |
+
return df, embeddings
|
| 56 |
+
|
| 57 |
+
def perform_tsne(embeddings):
|
| 58 |
+
start_time = time.time()
|
| 59 |
+
logging.info('Performing t-SNE...')
|
| 60 |
+
|
| 61 |
+
n_samples = len(embeddings)
|
| 62 |
+
perplexity = min(30, n_samples - 1) if n_samples > 1 else 1
|
| 63 |
+
|
| 64 |
+
# Check if all embeddings have the same length
|
| 65 |
+
if len(set([len(embed) for embed in embeddings])) > 1:
|
| 66 |
+
raise ValueError("All embeddings should have the same length")
|
| 67 |
+
|
| 68 |
+
# Dimensionality Reduction with t-SNE
|
| 69 |
+
tsne = TSNE(n_components=3, perplexity=perplexity, n_iter=300)
|
| 70 |
+
|
| 71 |
+
# Create a placeholder for progress bar
|
| 72 |
+
progress_text = st.empty()
|
| 73 |
+
progress_text.text("t-SNE in progress...")
|
| 74 |
+
|
| 75 |
+
tsne_results = tsne.fit_transform(np.vstack(embeddings.tolist()))
|
| 76 |
+
|
| 77 |
+
# Update progress bar to indicate completion
|
| 78 |
+
progress_text.text(f"t-SNE completed. Processed {n_samples} samples with perplexity {perplexity}.")
|
| 79 |
+
end_time = time.time() # End timing
|
| 80 |
+
st.sidebar.text(f't-SNE completed in {end_time - start_time:.3f} seconds')
|
| 81 |
+
return tsne_results
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
def perform_clustering(df, tsne_results):
|
| 85 |
+
start_time = time.time()
|
| 86 |
+
# Perform KMeans clustering
|
| 87 |
+
logging.info('Performing k-means clustering...')
|
| 88 |
+
# Step 3: Visualization with Plotly
|
| 89 |
+
df['tsne-3d-one'] = tsne_results[:,0]
|
| 90 |
+
df['tsne-3d-two'] = tsne_results[:,1]
|
| 91 |
+
df['tsne-3d-three'] = tsne_results[:,2]
|
| 92 |
+
|
| 93 |
+
# Perform KMeans clustering
|
| 94 |
+
kmeans = KMeans(n_clusters=16) # Change the number of clusters as needed
|
| 95 |
+
df['cluster'] = kmeans.fit_predict(df[['tsne-3d-one', 'tsne-3d-two', 'tsne-3d-three']])
|
| 96 |
+
end_time = time.time() # End timing
|
| 97 |
+
st.sidebar.text(f'k-means clustering completed in {end_time - start_time:.3f} seconds')
|
| 98 |
+
return df
|
| 99 |
+
|
| 100 |
+
def main():
|
| 101 |
+
# Custom CSS
|
| 102 |
+
custom_css = """
|
| 103 |
+
<style>
|
| 104 |
+
/* Define the font */
|
| 105 |
+
@font-face {
|
| 106 |
+
font-family: 'F';
|
| 107 |
+
src: url('https://fonts.googleapis.com/css2?family=Martian+Mono&display=swap') format('truetype');
|
| 108 |
+
}
|
| 109 |
+
/* Apply the font to all elements */
|
| 110 |
+
* {
|
| 111 |
+
font-family: 'F', sans-serif !important;
|
| 112 |
+
color: #F8F8F8; /* Set the font color to F8F8F8 */
|
| 113 |
+
}
|
| 114 |
+
/* Add your CSS styles here */
|
| 115 |
+
h1 {
|
| 116 |
+
text-align: center;
|
| 117 |
+
}
|
| 118 |
+
h2,h3,h4 {
|
| 119 |
+
text-align: justify;
|
| 120 |
+
font-size: 8px
|
| 121 |
+
}
|
| 122 |
+
body {
|
| 123 |
+
text-align: justify;
|
| 124 |
+
}
|
| 125 |
+
.stSlider .css-1cpxqw2 {
|
| 126 |
+
background: #202020;
|
| 127 |
+
}
|
| 128 |
+
.stButton > button {
|
| 129 |
+
background-color: #202020;
|
| 130 |
+
width: 100%;
|
| 131 |
+
border: none;
|
| 132 |
+
padding: 10px 24px;
|
| 133 |
+
border-radius: 5px;
|
| 134 |
+
font-size: 16px;
|
| 135 |
+
font-weight: bold;
|
| 136 |
+
}
|
| 137 |
+
.reportview-container .main .block-container {
|
| 138 |
+
padding: 2rem;
|
| 139 |
+
background-color: #202020;
|
| 140 |
+
}
|
| 141 |
+
</style>
|
| 142 |
+
"""
|
| 143 |
+
|
| 144 |
+
# Inject custom CSS with markdown
|
| 145 |
+
st.markdown(custom_css, unsafe_allow_html=True)
|
| 146 |
+
st.sidebar.markdown(
|
| 147 |
+
f'<img src="https://www.somewhere.systems/S2-white-logo.png" style="float: bottom-left; width: 32px; height: 32px; opacity: 1.0; animation: fadein 2s;">',
|
| 148 |
+
unsafe_allow_html=True
|
| 149 |
+
)
|
| 150 |
+
st.sidebar.title('Spatial Search Engine')
|
| 151 |
+
|
| 152 |
+
# Check if data needs to be loaded
|
| 153 |
+
if 'data_loaded' not in st.session_state or not st.session_state.data_loaded:
|
| 154 |
+
# User input for number of samples
|
| 155 |
+
num_samples = st.sidebar.slider('Select number of samples', 1000, total_samples, 1000)
|
| 156 |
+
|
| 157 |
+
if st.sidebar.button('Initialize'):
|
| 158 |
+
st.sidebar.text('Initializing data pipeline...')
|
| 159 |
+
|
| 160 |
+
# Define a function to reshape the embeddings and add FAISS index if it doesn't exist
|
| 161 |
+
def reshape_and_add_faiss_index(dataset, column_name):
|
| 162 |
+
|
| 163 |
+
# Ensure the shape of the embedding is (1000, 384) and not (1000, 1, 384)
|
| 164 |
+
# As each row in title_embedding is shaped like this: [[-0.08477783203125, -0.009719848632812, ...]]
|
| 165 |
+
# We need to flatten it to [-0.08477783203125, -0.009719848632812, ...]
|
| 166 |
+
print(f"Flattening {column_name} and adding FAISS index...")
|
| 167 |
+
# Flatten the embeddings
|
| 168 |
+
dataset[column_name] = dataset[column_name].apply(lambda x: np.array(x).flatten())
|
| 169 |
+
# Add the FAISS index
|
| 170 |
+
dataset = Dataset.from_pandas(dataset).add_faiss_index(column=column_name)
|
| 171 |
+
print(f"FAISS index for {column_name} added.")
|
| 172 |
+
|
| 173 |
+
return dataset
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# Load data and perform t-SNE and clustering
|
| 178 |
+
df, embeddings = load_data(num_samples)
|
| 179 |
+
|
| 180 |
+
# Combine embeddings and df back into one df
|
| 181 |
+
# Convert embeddings to list of lists before assigning to df
|
| 182 |
+
embeddings_list = [embedding.flatten().tolist() for embedding in embeddings]
|
| 183 |
+
df['title_embedding'] = embeddings_list
|
| 184 |
+
# Print the first few rows of the dataframe to check
|
| 185 |
+
print(df.head())
|
| 186 |
+
# Add FAISS indices for 'title_embedding'
|
| 187 |
+
st.session_state.dataclysm_title_indexed = reshape_and_add_faiss_index(df, 'title_embedding')
|
| 188 |
+
tsne_results = perform_tsne(embeddings)
|
| 189 |
+
df = perform_clustering(df, tsne_results)
|
| 190 |
+
# Store results in session state
|
| 191 |
+
st.session_state.df = df
|
| 192 |
+
st.session_state.tsne_results = tsne_results
|
| 193 |
+
st.session_state.data_loaded = True
|
| 194 |
+
|
| 195 |
+
# Create custom hover text
|
| 196 |
+
df['hovertext'] = df.apply(
|
| 197 |
+
lambda row: f"<b>Title:</b> {row['title']}<br><b>arXiv ID:</b> {row['id']}<br><b>Key:</b> {row.name}", axis=1
|
| 198 |
+
)
|
| 199 |
+
st.sidebar.text("Datasets loaded, titles indexed.")
|
| 200 |
+
|
| 201 |
+
# Create the plot
|
| 202 |
+
fig = go.Figure(data=[go.Scatter3d(
|
| 203 |
+
x=df['tsne-3d-one'],
|
| 204 |
+
y=df['tsne-3d-two'],
|
| 205 |
+
z=df['tsne-3d-three'],
|
| 206 |
+
mode='markers',
|
| 207 |
+
hovertext=df['hovertext'],
|
| 208 |
+
hoverinfo='text',
|
| 209 |
+
marker=dict(
|
| 210 |
+
size=1,
|
| 211 |
+
color=df['cluster'],
|
| 212 |
+
colorscale='Viridis',
|
| 213 |
+
opacity=0.8
|
| 214 |
+
)
|
| 215 |
+
)])
|
| 216 |
+
|
| 217 |
+
fig.update_layout(
|
| 218 |
+
plot_bgcolor='#202020',
|
| 219 |
+
height=800,
|
| 220 |
+
margin=dict(l=0, r=0, b=0, t=0),
|
| 221 |
+
scene=dict(
|
| 222 |
+
xaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
| 223 |
+
yaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
| 224 |
+
zaxis=dict(showbackground=True, backgroundcolor="#000000"),
|
| 225 |
+
),
|
| 226 |
+
scene_camera=dict(eye=dict(x=0.001, y=0.001, z=0.001))
|
| 227 |
+
)
|
| 228 |
+
st.session_state.fig = fig
|
| 229 |
+
|
| 230 |
+
# Display the plot if data is loaded
|
| 231 |
+
if 'data_loaded' in st.session_state and st.session_state.data_loaded:
|
| 232 |
+
st.plotly_chart(st.session_state.fig, use_container_width=True)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
# Sidebar for detailed view
|
| 236 |
+
if 'df' in st.session_state:
|
| 237 |
+
# Sidebar for querying
|
| 238 |
+
with st.sidebar:
|
| 239 |
+
st.sidebar.markdown("### Query Embeddings")
|
| 240 |
+
query = st.text_input("Enter your query:")
|
| 241 |
+
if st.button("Search"):
|
| 242 |
+
# Define the model
|
| 243 |
+
print("Initializing model...")
|
| 244 |
+
model = FlagModel('BAAI/bge-small-en-v1.5',
|
| 245 |
+
query_instruction_for_retrieval="Represent this sentence for searching relevant passages:",
|
| 246 |
+
use_fp16=True)
|
| 247 |
+
print("Model initialized.")
|
| 248 |
+
|
| 249 |
+
query_embedding = model.encode([query])
|
| 250 |
+
# Retrieve examples by title similarity (or abstract, depending on your preference)
|
| 251 |
+
scores_title, retrieved_examples_title = st.session_state.dataclysm_title_indexed.get_nearest_examples('title_embedding', query_embedding, k=10)
|
| 252 |
+
df_query = pd.DataFrame(retrieved_examples_title)
|
| 253 |
+
df_query['proximity'] = scores_title
|
| 254 |
+
df_query = df_query.sort_values(by='proximity', ascending=True)
|
| 255 |
+
# Limit similarity score to 3 decimal points
|
| 256 |
+
df_query['proximity'] = df_query['proximity'].round(3)
|
| 257 |
+
# Fix the <a href link> to display properly
|
| 258 |
+
df_query['URL'] = df_query['id'].apply(lambda x: f'<a href="https://arxiv.org/abs/{x}" target="_blank">Link</a>')
|
| 259 |
+
st.sidebar.markdown(df_query[['title', 'proximity', 'id']].to_html(escape=False), unsafe_allow_html=True)
|
| 260 |
+
st.sidebar.markdown("# Detailed View")
|
| 261 |
+
selected_index = st.sidebar.selectbox("Select Key", st.session_state.df.id)
|
| 262 |
+
|
| 263 |
+
# Display metadata for the selected article
|
| 264 |
+
selected_row = st.session_state.df[st.session_state.df['id'] == selected_index].iloc[0]
|
| 265 |
+
st.markdown(f"### Title\n{selected_row['title']}", unsafe_allow_html=True)
|
| 266 |
+
st.markdown(f"### Abstract\n{selected_row['abstract']}", unsafe_allow_html=True)
|
| 267 |
+
st.markdown(f"[Read the full paper](https://arxiv.org/abs/{selected_row['id']})", unsafe_allow_html=True)
|
| 268 |
+
st.markdown(f"[Download PDF](https://arxiv.org/pdf/{selected_row['id']})", unsafe_allow_html=True)
|
| 269 |
+
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
if __name__ == "__main__":
|
| 273 |
+
main()
|
| 274 |
+
|
| 275 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,308 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
accelerate==0.25.0
|
| 2 |
+
aiofiles==23.2.1
|
| 3 |
+
aiohttp==3.9.1
|
| 4 |
+
aiosignal==1.3.1
|
| 5 |
+
altair==5.2.0
|
| 6 |
+
annotated-types==0.6.0
|
| 7 |
+
anyio==4.2.0
|
| 8 |
+
apache-beam==2.52.0
|
| 9 |
+
appdirs==1.4.4
|
| 10 |
+
appnope==0.1.3
|
| 11 |
+
asgiref==3.7.2
|
| 12 |
+
astor==0.8.1
|
| 13 |
+
asttokens==2.4.1
|
| 14 |
+
attrs==23.2.0
|
| 15 |
+
backoff==2.2.1
|
| 16 |
+
beautifulsoup4==4.12.2
|
| 17 |
+
bitsandbytes==0.42.0
|
| 18 |
+
blessed==1.20.0
|
| 19 |
+
blinker==1.7.0
|
| 20 |
+
boto==2.49.0
|
| 21 |
+
build==1.0.3
|
| 22 |
+
CacheControl==0.13.1
|
| 23 |
+
cachetools==5.3.2
|
| 24 |
+
certifi==2023.11.17
|
| 25 |
+
|
| 26 |
+
charset-normalizer==3.3.2
|
| 27 |
+
ci-info==0.3.0
|
| 28 |
+
cleo==2.1.0
|
| 29 |
+
click==8.1.7
|
| 30 |
+
cloudpickle==2.2.1
|
| 31 |
+
colorama==0.4.6
|
| 32 |
+
comm==0.2.0
|
| 33 |
+
configobj==5.0.8
|
| 34 |
+
configparser==6.0.0
|
| 35 |
+
contourpy==1.2.0
|
| 36 |
+
crashtest==0.4.1
|
| 37 |
+
crcmod==1.7
|
| 38 |
+
cryptography==41.0.7
|
| 39 |
+
cycler==0.12.1
|
| 40 |
+
dataclasses==0.6
|
| 41 |
+
dataclasses-json==0.6.3
|
| 42 |
+
datasets==2.14.7
|
| 43 |
+
debugpy==1.8.0
|
| 44 |
+
decorator==5.1.1
|
| 45 |
+
Deprecated==1.2.14
|
| 46 |
+
dill==0.3.7
|
| 47 |
+
diskcache==5.6.3
|
| 48 |
+
distlib==0.3.8
|
| 49 |
+
distro==1.9.0
|
| 50 |
+
dnspython==2.4.2
|
| 51 |
+
docarray==0.40.0
|
| 52 |
+
docker==7.0.0
|
| 53 |
+
docker-pycreds==0.4.0
|
| 54 |
+
docopt==0.6.2
|
| 55 |
+
|
| 56 |
+
dulwich==0.21.7
|
| 57 |
+
ecdsa==0.18.0
|
| 58 |
+
editor==1.6.5
|
| 59 |
+
etelemetry==0.3.1
|
| 60 |
+
executing==2.0.1
|
| 61 |
+
faiss-cpu==1.7.4
|
| 62 |
+
fastapi==0.108.0
|
| 63 |
+
fastavro==1.9.2
|
| 64 |
+
fasteners==0.19
|
| 65 |
+
fastjsonschema==2.19.1
|
| 66 |
+
filelock==3.13.1
|
| 67 |
+
fitz==0.0.1.dev2
|
| 68 |
+
FlagEmbedding==1.1.8
|
| 69 |
+
fonttools==4.47.0
|
| 70 |
+
frontend==0.0.3
|
| 71 |
+
frozenlist==1.4.1
|
| 72 |
+
fsspec==2023.10.0
|
| 73 |
+
future==0.18.3
|
| 74 |
+
gcs-oauth2-boto-plugin==3.0
|
| 75 |
+
git-python==1.0.3
|
| 76 |
+
gitdb==4.0.11
|
| 77 |
+
GitPython==3.1.40
|
| 78 |
+
google-apitools==0.5.32
|
| 79 |
+
google-auth==2.26.2
|
| 80 |
+
google-reauth==0.1.1
|
| 81 |
+
googleapis-common-protos==1.62.0
|
| 82 |
+
greenlet==3.0.3
|
| 83 |
+
grpcio==1.57.0
|
| 84 |
+
grpcio-health-checking==1.57.0
|
| 85 |
+
grpcio-reflection==1.57.0
|
| 86 |
+
gsutil==5.27
|
| 87 |
+
h11==0.14.0
|
| 88 |
+
hdfs==2.7.3
|
| 89 |
+
hf_transfer==0.1.4
|
| 90 |
+
html2image==2.0.4.3
|
| 91 |
+
httpcore==1.0.2
|
| 92 |
+
httplib2==0.20.4
|
| 93 |
+
httptools==0.6.1
|
| 94 |
+
httpx==0.26.0
|
| 95 |
+
huggingface-hub==0.17.3
|
| 96 |
+
idna==3.6
|
| 97 |
+
importlib-metadata==6.11.0
|
| 98 |
+
inquirer==3.2.1
|
| 99 |
+
installer==0.7.0
|
| 100 |
+
isodate==0.6.1
|
| 101 |
+
itsdangerous==2.1.2
|
| 102 |
+
jaraco.classes==3.3.0
|
| 103 |
+
jcloud==0.3
|
| 104 |
+
jedi==0.19.1
|
| 105 |
+
jina==3.23.2
|
| 106 |
+
jina-hubble-sdk==0.39.0
|
| 107 |
+
Jinja2==3.1.2
|
| 108 |
+
joblib==1.3.2
|
| 109 |
+
Js2Py==0.74
|
| 110 |
+
jsonschema==4.20.0
|
| 111 |
+
jsonschema-specifications==2023.12.1
|
| 112 |
+
jupyter_client==8.6.0
|
| 113 |
+
jupyter_core==5.5.1
|
| 114 |
+
keyring==24.3.0
|
| 115 |
+
kiwisolver==1.4.5
|
| 116 |
+
litellm==1.16.19
|
| 117 |
+
llama-index==0.9.24
|
| 118 |
+
llama_cpp_python==0.2.26
|
| 119 |
+
looseversion==1.3.0
|
| 120 |
+
lxml==5.0.0
|
| 121 |
+
markdown-it-py==3.0.0
|
| 122 |
+
MarkupSafe==2.1.3
|
| 123 |
+
marshmallow==3.20.1
|
| 124 |
+
matplotlib==3.8.2
|
| 125 |
+
matplotlib-inline==0.1.6
|
| 126 |
+
mdurl==0.1.2
|
| 127 |
+
|
| 128 |
+
monotonic==1.6
|
| 129 |
+
more-itertools==10.1.0
|
| 130 |
+
MouseInfo==0.1.3
|
| 131 |
+
mpmath==1.3.0
|
| 132 |
+
msgpack==1.0.7
|
| 133 |
+
multidict==6.0.4
|
| 134 |
+
multiprocess==0.70.15
|
| 135 |
+
mwparserfromhell==0.6.5
|
| 136 |
+
mypy-extensions==1.0.0
|
| 137 |
+
nest-asyncio==1.5.8
|
| 138 |
+
networkx==3.2.1
|
| 139 |
+
nibabel==5.2.0
|
| 140 |
+
nipype==1.8.6
|
| 141 |
+
nltk==3.8.1
|
| 142 |
+
numpy==1.26.2
|
| 143 |
+
oauth2client==4.1.3
|
| 144 |
+
objsize==0.6.1
|
| 145 |
+
open-interpreter==0.2.0
|
| 146 |
+
openai==1.6.1
|
| 147 |
+
opencv-python==4.9.0.80
|
| 148 |
+
opentelemetry-api==1.19.0
|
| 149 |
+
opentelemetry-exporter-otlp==1.19.0
|
| 150 |
+
opentelemetry-exporter-otlp-proto-common==1.19.0
|
| 151 |
+
opentelemetry-exporter-otlp-proto-grpc==1.19.0
|
| 152 |
+
opentelemetry-exporter-otlp-proto-http==1.19.0
|
| 153 |
+
opentelemetry-exporter-prometheus==0.41b0
|
| 154 |
+
opentelemetry-instrumentation==0.40b0
|
| 155 |
+
opentelemetry-instrumentation-aiohttp-client==0.40b0
|
| 156 |
+
opentelemetry-instrumentation-asgi==0.40b0
|
| 157 |
+
opentelemetry-instrumentation-fastapi==0.40b0
|
| 158 |
+
opentelemetry-instrumentation-grpc==0.40b0
|
| 159 |
+
opentelemetry-proto==1.19.0
|
| 160 |
+
opentelemetry-sdk==1.19.0
|
| 161 |
+
opentelemetry-semantic-conventions==0.40b0
|
| 162 |
+
opentelemetry-util-http==0.40b0
|
| 163 |
+
orjson==3.9.10
|
| 164 |
+
packaging==23.2
|
| 165 |
+
pandas==2.1.4
|
| 166 |
+
parso==0.8.3
|
| 167 |
+
pathlib==1.0.1
|
| 168 |
+
pathspec==0.12.1
|
| 169 |
+
pdfminer.six==20221105
|
| 170 |
+
pdfplumber==0.10.3
|
| 171 |
+
peft==0.7.1
|
| 172 |
+
pexpect==4.9.0
|
| 173 |
+
Pillow==10.1.0
|
| 174 |
+
pkginfo==1.9.6
|
| 175 |
+
platformdirs==4.0.0
|
| 176 |
+
plotly==5.18.0
|
| 177 |
+
plyer==2.1.0
|
| 178 |
+
poetry==1.7.1
|
| 179 |
+
poetry-core==1.8.1
|
| 180 |
+
poetry-plugin-export==1.6.0
|
| 181 |
+
posthog==3.1.0
|
| 182 |
+
pretty-traceback==2023.1020
|
| 183 |
+
prometheus-client==0.19.0
|
| 184 |
+
prompt-toolkit==3.0.43
|
| 185 |
+
proto-plus==1.23.0
|
| 186 |
+
protobuf==4.25.1
|
| 187 |
+
prov==2.0.0
|
| 188 |
+
psutil==5.9.7
|
| 189 |
+
ptyprocess==0.7.0
|
| 190 |
+
pure-eval==0.2.2
|
| 191 |
+
pyarrow==11.0.0
|
| 192 |
+
pyarrow-hotfix==0.6
|
| 193 |
+
pyasn1==0.5.1
|
| 194 |
+
pyasn1-modules==0.3.0
|
| 195 |
+
PyAutoGUI==0.9.54
|
| 196 |
+
|
| 197 |
+
pydantic==2.5.3
|
| 198 |
+
pydantic-settings==2.1.0
|
| 199 |
+
pydantic_core==2.14.6
|
| 200 |
+
pydeck==0.8.1b0
|
| 201 |
+
pydot==1.4.2
|
| 202 |
+
PyGetWindow==0.0.9
|
| 203 |
+
Pygments==2.17.2
|
| 204 |
+
pyjsparser==2.7.1
|
| 205 |
+
PyMonCtl==0.7
|
| 206 |
+
pymongo==4.6.1
|
| 207 |
+
PyMsgBox==1.0.9
|
| 208 |
+
pyopencl==2023.1.4
|
| 209 |
+
pyOpenSSL==23.3.0
|
| 210 |
+
pypandoc==1.12
|
| 211 |
+
pyparsing==3.1.1
|
| 212 |
+
pypdf==3.17.4
|
| 213 |
+
PyPDF2==3.0.1
|
| 214 |
+
pypdfium2==4.25.0
|
| 215 |
+
pyperclip==1.8.2
|
| 216 |
+
pyproject_hooks==1.0.0
|
| 217 |
+
PyRect==0.2.0
|
| 218 |
+
PyScreeze==0.1.30
|
| 219 |
+
pytesseract==0.3.10
|
| 220 |
+
python-dateutil==2.8.2
|
| 221 |
+
python-dotenv==1.0.0
|
| 222 |
+
python-jose==3.3.0
|
| 223 |
+
python-multipart==0.0.6
|
| 224 |
+
pytils==0.4.1
|
| 225 |
+
pytools==2023.1.1
|
| 226 |
+
pytweening==1.0.7
|
| 227 |
+
pytz==2023.3.post1
|
| 228 |
+
pyu2f==0.1.5
|
| 229 |
+
PyWinBox==0.6
|
| 230 |
+
PyWinCtl==0.3
|
| 231 |
+
pyxnat==1.6
|
| 232 |
+
PyYAML==6.0.1
|
| 233 |
+
pyzmq==25.1.2
|
| 234 |
+
rapidfuzz==3.6.1
|
| 235 |
+
ray==2.9.0
|
| 236 |
+
rdflib==7.0.0
|
| 237 |
+
readchar==4.0.5
|
| 238 |
+
referencing==0.32.0
|
| 239 |
+
regex==2023.12.25
|
| 240 |
+
requests==2.31.0
|
| 241 |
+
requests-toolbelt==1.0.0
|
| 242 |
+
retry-decorator==1.1.1
|
| 243 |
+
rich==13.7.0
|
| 244 |
+
rpds-py==0.16.2
|
| 245 |
+
rsa==4.7.2
|
| 246 |
+
rubicon-objc==0.4.7
|
| 247 |
+
runs==1.2.0
|
| 248 |
+
safetensors==0.4.1
|
| 249 |
+
scikit-learn==1.3.2
|
| 250 |
+
scipy==1.11.4
|
| 251 |
+
sentence-transformers==2.2.2
|
| 252 |
+
sentencepiece==0.1.99
|
| 253 |
+
sentry-sdk==1.39.2
|
| 254 |
+
setproctitle==1.3.3
|
| 255 |
+
shellingham==1.5.4
|
| 256 |
+
simplejson==3.19.2
|
| 257 |
+
six==1.16.0
|
| 258 |
+
smmap==5.0.1
|
| 259 |
+
sniffio==1.3.0
|
| 260 |
+
soupsieve==2.5
|
| 261 |
+
SQLAlchemy==2.0.24
|
| 262 |
+
sse-starlette==1.8.2
|
| 263 |
+
stack-data==0.6.3
|
| 264 |
+
starlette==0.32.0.post1
|
| 265 |
+
starlette-context==0.3.6
|
| 266 |
+
streamlit==1.30.0
|
| 267 |
+
sympy==1.12
|
| 268 |
+
tenacity==8.2.3
|
| 269 |
+
threadpoolctl==3.2.0
|
| 270 |
+
tiktoken==0.4.0
|
| 271 |
+
tinygrad==0.7.0
|
| 272 |
+
tokenizers==0.14.1
|
| 273 |
+
tokentrim==0.1.13
|
| 274 |
+
toml==0.10.2
|
| 275 |
+
tomlkit==0.12.3
|
| 276 |
+
tools==0.1.9
|
| 277 |
+
tornado==6.4
|
| 278 |
+
tqdm==4.66.1
|
| 279 |
+
traitlets==5.14.0
|
| 280 |
+
traits==6.3.2
|
| 281 |
+
transformers==4.34.0
|
| 282 |
+
trove-classifiers==2023.11.29
|
| 283 |
+
types-requests==2.31.0.6
|
| 284 |
+
types-urllib3==1.26.25.14
|
| 285 |
+
typing-inspect==0.9.0
|
| 286 |
+
typing_extensions==4.9.0
|
| 287 |
+
tzdata==2023.4
|
| 288 |
+
tzlocal==5.2
|
| 289 |
+
urllib3==2.1.0
|
| 290 |
+
uvicorn==0.24.0.post1
|
| 291 |
+
uvloop==0.19.0
|
| 292 |
+
validators==0.22.0
|
| 293 |
+
virtualenv==20.25.0
|
| 294 |
+
wandb==0.16.2
|
| 295 |
+
watchdog==3.0.0
|
| 296 |
+
watchfiles==0.21.0
|
| 297 |
+
wcwidth==0.2.12
|
| 298 |
+
websocket-client==1.7.0
|
| 299 |
+
websockets==12.0
|
| 300 |
+
wget==3.2
|
| 301 |
+
wrapt==1.16.0
|
| 302 |
+
xattr==0.10.1
|
| 303 |
+
xmod==1.8.1
|
| 304 |
+
xxhash==3.4.1
|
| 305 |
+
yarl==1.9.4
|
| 306 |
+
youtube-dl==2021.12.17
|
| 307 |
+
zipp==3.17.0
|
| 308 |
+
zstandard==0.22.0
|