Spaces:
Running
Running
File size: 32,627 Bytes
01ee73c 3f8009c 01ee73c 3f8009c 01ee73c 9b74786 e8b5c5e 9b74786 65853dd 01ee73c fc5a2be 3f8009c e9abbb0 3f8009c bd38123 098e8e5 e8b5c5e 621db7d 9b74786 3f8009c 9b74786 01ee73c 9b74786 01ee73c 9b74786 01ee73c 9b74786 3f8009c 01ee73c 3f8009c d78daff 621db7d d78daff 621db7d d78daff 4ace391 d78daff 621db7d d78daff 621db7d d78daff 621db7d d78daff 4ace391 d78daff 621db7d 3f8009c 621db7d 9b74786 621db7d 9b74786 4ace391 9b74786 01ee73c 3f8009c 9b74786 01ee73c 3f8009c 9b74786 4ace391 9b74786 621db7d 3f8009c 01ee73c e8b5c5e 3f8009c 01ee73c e8b5c5e 01ee73c e8b5c5e 10a6457 3f8009c e8b5c5e 3f8009c 9b74786 3f8009c 9b74786 3f8009c 9b74786 01ee73c e8b5c5e 10a6457 3f8009c d78daff e8b5c5e d78daff 3f8009c 621db7d 10a6457 621db7d 10a6457 621db7d 10a6457 e8b5c5e 10a6457 621db7d e8b5c5e 621db7d e8b5c5e 10a6457 01ee73c 621db7d e8b5c5e 6f34f72 621db7d 3f8009c a21bd50 621db7d b5da221 bd38123 621db7d 01ee73c 621db7d e8b5c5e 621db7d 4c41bab 621db7d 4c41bab 621db7d e8b5c5e 621db7d e8b5c5e 621db7d e8b5c5e 621db7d e8b5c5e 621db7d e6f110c 621db7d e6f110c 621db7d e8b5c5e 621db7d e8b5c5e 621db7d e8b5c5e 621db7d 01ee73c e8b5c5e 3f8009c e8b5c5e 621db7d e8b5c5e 3f8009c e8b5c5e 621db7d e8b5c5e 621db7d 6b94939 621db7d 3f8009c 621db7d 01ee73c 621db7d 3f8009c 621db7d 01ee73c 621db7d cf1977f 621db7d e8b5c5e 621db7d 3f8009c 621db7d 3f8009c 621db7d 3f8009c e8b5c5e 01ee73c 3f8009c e8b5c5e 01ee73c 3f8009c 01ee73c e8b5c5e 01ee73c fc5a2be 01ee73c 3f8009c 494c292 3f8009c 01ee73c 3f8009c bd38123 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 |
#!/usr/bin/env python3
"""
Step Audio R1 vLLM Gradio Interface
"""
import base64
import json
import os
import io
import time
from pydub import AudioSegment
import re
import gradio as gr
import httpx
API_BASE_URL = os.getenv("API_BASE_URL", "http://localhost:9999/v1")
MODEL_NAME = os.getenv("MODEL_NAME", "Step-Audio-R1")
SECRET = os.getenv("API_SECRET", "")
# 音频大小限制 (10MB)
MAX_AUDIO_SIZE_MB = 10
MAX_AUDIO_SIZE_BYTES = MAX_AUDIO_SIZE_MB * 1024 * 1024
def get_wav_size(audio_path):
"""Calculate the size of audio after converting to wav (in bytes)"""
if not audio_path or not os.path.exists(audio_path):
return 0
try:
audio = AudioSegment.from_file(audio_path)
buffer = io.BytesIO()
audio.export(buffer, format="wav")
return len(buffer.getvalue())
except Exception as e:
print(f"[ERROR] Failed to calculate wav size: {e}")
return 0
def get_audio_size_info(used_size_bytes, current_audio_path=None):
"""Get audio size usage info message"""
current_size = 0
if current_audio_path and os.path.exists(current_audio_path):
current_size = get_wav_size(current_audio_path)
remaining = MAX_AUDIO_SIZE_BYTES - used_size_bytes
used_mb = used_size_bytes / (1024 * 1024)
remaining_mb = remaining / (1024 * 1024)
current_mb = current_size / (1024 * 1024)
if used_size_bytes == 0 and current_size == 0:
return f"📊 Audio limit: {MAX_AUDIO_SIZE_MB}MB total available"
elif current_size > 0:
new_remaining = remaining - current_size
new_remaining_mb = new_remaining / (1024 * 1024)
if new_remaining < 0:
return f"📊 ⚠️ Current audio ({current_mb:.2f}MB) exceeds remaining limit ({remaining_mb:.2f}MB)"
return f"📊 Audio: {used_mb:.2f}MB used + {current_mb:.2f}MB pending = {new_remaining_mb:.2f}MB remaining"
else:
return f"📊 Audio limit: {used_mb:.2f}MB used, {remaining_mb:.2f}MB remaining (max {MAX_AUDIO_SIZE_MB}MB)"
def escape_html(text):
"""Escape HTML special characters to prevent XSS"""
if not isinstance(text, str):
return text
return (text
.replace("&", "&")
.replace("<", "<")
.replace(">", ">")
.replace('"', """)
.replace("'", "'"))
def process_audio(audio_path):
"""
Process audio: convert to wav, split if > 25s.
Returns a list of base64 encoded wav strings.
"""
if not audio_path or not os.path.exists(audio_path):
return []
try:
# Load audio (pydub handles mp3, wav, etc. automatically if ffmpeg is installed)
audio = AudioSegment.from_file(audio_path)
# Split into chunks of 25 seconds (25000 ms)
chunk_length_ms = 25000
chunks = []
if len(audio) > chunk_length_ms:
for i in range(0, len(audio), chunk_length_ms):
chunk = audio[i:i + chunk_length_ms]
chunks.append(chunk)
else:
chunks.append(audio)
# Convert chunks to base64 wav
audio_data_list = []
for chunk in chunks:
buffer = io.BytesIO()
chunk.export(buffer, format="wav")
encoded = base64.b64encode(buffer.getvalue()).decode()
audio_data_list.append(encoded)
return audio_data_list
except Exception as e:
print(f"[DEBUG] Audio processing error: {e}")
return []
def format_messages(system, history, user_text, audio_data_list=None):
"""Format message list"""
messages = []
if system:
messages.append({"role": "system", "content": system})
if not history:
history = []
# 处理历史记录
for item in history:
role = item.get("role") if isinstance(item, dict) else getattr(item, "role", None)
content = item.get("content") if isinstance(item, dict) else getattr(item, "content", None)
if not role or content is None:
continue
# If content contains thinking process (with thinking-block div), extract only the response part
if role == "assistant" and isinstance(content, str) and '<div class="thinking-block">' in content:
# Find the end of the thinking block and extract what comes after
# Match the entire thinking block
pattern = r'<div class="thinking-block">.*?</div>\s*</div>\s*'
remaining_content = re.sub(pattern, '', content, flags=re.DOTALL).strip()
# If there's meaningful content after the thinking block, use it
if remaining_content and not remaining_content.startswith('<'):
content = remaining_content
else:
# Still in thinking phase or no response yet, skip
continue
# Check for Audio
is_audio = isinstance(content, dict) and content.get("component") == "audio"
if is_audio:
audio_path = content["value"]["path"]
if audio_path and os.path.exists(audio_path):
try:
item_audio_data_list = process_audio(audio_path)
new_content = []
for audio_data in item_audio_data_list:
new_content.append({
"type": "input_audio",
"input_audio": {
"data": "data:audio/wav;base64," + audio_data,
"format": "wav"
}
})
messages.append({"role": role, "content": new_content})
except Exception as e:
print(f"[ERROR] Failed to process history audio: {e}")
elif isinstance(content, str):
messages.append({"role": role, "content": content})
elif isinstance(content, list):
# Process list items and ensure text comes before audio
text_items = []
audio_items = []
other_items = []
for c in content:
# Check for Audio in list
is_c_audio = isinstance(c, dict) and c.get('component') == "audio"
if is_c_audio:
audio_path = c["value"]["path"]
if audio_path and os.path.exists(audio_path):
try:
item_audio_data_list = process_audio(audio_path)
for audio_data in item_audio_data_list:
audio_items.append({
"type": "input_audio",
"input_audio": {
"data": "data:audio/wav;base64," + audio_data,
"format": "wav"
}
})
except Exception as e:
print(f"[ERROR] Failed to process history audio in list: {e}")
elif isinstance(c, str):
text_items.append({"type": "text", "text": c})
elif isinstance(c, dict):
# Distinguish between text and audio types
if c.get("type") == "text":
text_items.append(c)
elif c.get("type") == "input_audio":
audio_items.append(c)
else:
other_items.append(c)
# Combine: text first, then audio, then others
safe_content = text_items + audio_items + other_items
if safe_content:
messages.append({"role": role, "content": safe_content})
# 添加当前用户消息(文本在前,音频在后)
if user_text and audio_data_list:
content = []
# 先添加文本
content.append({
"type": "text",
"text": user_text
})
# 再添加音频
for audio_data in audio_data_list:
content.append({
"type": "input_audio",
"input_audio": {
"data": "data:audio/wav;base64," + audio_data,
"format": "wav"
}
})
messages.append({
"role": "user",
"content": content
})
elif user_text:
messages.append({"role": "user", "content": user_text})
elif audio_data_list:
content = []
for audio_data in audio_data_list:
content.append({
"type": "input_audio",
"input_audio": {
"data": "data:audio/wav;base64," + audio_data,
"format": "wav"
}
})
messages.append({
"role": "user",
"content": content
})
return messages
def chat(system_prompt, user_text, audio_file, history, used_audio_size, max_tokens, temperature, top_p, show_thinking=True, model_name=None):
"""Chat function"""
# If model is not specified, use global configuration
if model_name is None:
model_name = MODEL_NAME
# 初始化已使用音频大小
if used_audio_size is None:
used_audio_size = 0
if not user_text and not audio_file:
yield history or [], used_audio_size, get_audio_size_info(used_audio_size, None)
return
# 检查音频大小限制
current_audio_size = 0
if audio_file:
current_audio_size = get_wav_size(audio_file)
total_size = used_audio_size + current_audio_size
if total_size > MAX_AUDIO_SIZE_BYTES:
history = history or []
remaining_mb = (MAX_AUDIO_SIZE_BYTES - used_audio_size) / (1024 * 1024)
current_mb = current_audio_size / (1024 * 1024)
error_msg = f"❌ Audio size limit exceeded! Current audio is {current_mb:.2f}MB, but only {max(0, remaining_mb):.2f}MB remaining (max {MAX_AUDIO_SIZE_MB}MB)"
history.append({"role": "assistant", "content": error_msg})
yield history, used_audio_size, get_audio_size_info(used_audio_size, None)
return
# Ensure history is a list and formatted correctly
history = history or []
clean_history = []
for item in history:
if isinstance(item, dict) and 'role' in item and 'content' in item:
clean_history.append(item)
elif hasattr(item, "role") and hasattr(item, "content"):
# Keep ChatMessage object
clean_history.append(item)
history = clean_history
# Process audio
audio_data_list = []
if audio_file:
audio_data_list = process_audio(audio_file)
messages = format_messages(system_prompt, history, user_text, audio_data_list)
if not messages:
yield history or [], used_audio_size, get_audio_size_info(used_audio_size, None)
return
# Debug: Print message format
debug_messages = []
for msg in messages:
if isinstance(msg, dict) and isinstance(msg.get("content"), list):
new_content = []
for item in msg["content"]:
if isinstance(item, dict) and item.get("type") == "input_audio":
item_copy = item.copy()
if "input_audio" in item_copy:
audio_info = item_copy["input_audio"].copy()
if "data" in audio_info:
data_len = len(audio_info['data'])
if data_len >= 1024 * 1024:
human_size = f"{data_len / (1024 * 1024):.2f} MB"
elif data_len >= 1024:
human_size = f"{data_len / 1024:.2f} KB"
else:
human_size = f"{data_len} B"
audio_info["data"] = f"[BASE64_AUDIO_DATA: {human_size} ({data_len} bytes)]"
item_copy["input_audio"] = audio_info
new_content.append(item_copy)
else:
new_content.append(item)
msg_copy = msg.copy()
msg_copy["content"] = new_content
debug_messages.append(msg_copy)
else:
debug_messages.append(msg)
print(f"[DEBUG] Messages to API: {json.dumps(debug_messages, ensure_ascii=False, indent=2)}")
# Update history with user message immediately (text first, then audio)
if user_text and audio_file:
# 1. Add text message first
history.append({"role": "user", "content": user_text})
# 2. Add audio message second
history.append({"role": "user", "content": gr.Audio(audio_file)})
elif user_text:
# Text only
history.append({"role": "user", "content": user_text})
elif audio_file:
# Audio only
history.append({"role": "user", "content": gr.Audio(audio_file)})
# 更新已使用的音频大小
new_used_audio_size = used_audio_size + current_audio_size
# Add thinking placeholder
if show_thinking:
history.append({
"role": "assistant",
"content": (
'<div class="thinking-block">\n'
'<div class="thinking-header">💭 Thinking...</div>\n'
'<div class="thinking-content">Processing your request...</div>\n'
'</div>'
)
})
yield history, new_used_audio_size, get_audio_size_info(new_used_audio_size, None)
else:
history.append({
"role": "assistant",
"content": "⏳ Generating response..."
})
yield history, new_used_audio_size, get_audio_size_info(new_used_audio_size, None)
try:
# 禁用代理以访问内网 API
start_time = time.time()
print(f"[API] Starting request to {API_BASE_URL}/chat/completions ...")
with httpx.Client(base_url=API_BASE_URL, timeout=120) as client:
response = client.post("/chat/completions", json={
"model": model_name,
"messages": messages,
"max_tokens": max_tokens,
"temperature": temperature,
"top_p": top_p,
"stream": True,
"repetition_penalty": 1.0,
"stop_token_ids": [151665]
}, headers={
"Authorization": f"Bearer {SECRET}",
})
if response.status_code != 200:
elapsed_time = time.time() - start_time
print(f"[API] ❌ FAILED - Status: {response.status_code}, Time: {elapsed_time:.2f}s")
error_msg = f"❌ API Error {response.status_code}"
if response.status_code == 404:
error_msg += " - vLLM service not ready"
elif response.status_code == 400:
error_msg += f" - Bad request ({response.text})"
elif response.status_code == 500:
error_msg += f" - Model error ({response.text})"
# Update the last message with error
history[-1]["content"] = error_msg
yield history, new_used_audio_size, get_audio_size_info(new_used_audio_size, None)
return
# Process streaming response
buffer = ""
is_thinking = True
for line in response.iter_lines():
if not line:
continue
# Ensure line is string format
if isinstance(line, bytes):
line = line.decode('utf-8')
else:
line = str(line)
if line.startswith('data: '):
data_str = line[6:]
if data_str.strip() == '[DONE]':
break
try:
data = json.loads(data_str)
if 'choices' in data and len(data['choices']) > 0:
delta = data['choices'][0].get('delta', {})
if 'content' in delta:
content = delta['content']
buffer += content
if is_thinking:
if "</think>" in buffer:
is_thinking = False
parts = buffer.split("</think>", 1)
think_content = parts[0]
response_content = parts[1]
if think_content.startswith("<think>"):
think_content = think_content[len("<think>"):].strip()
if show_thinking:
# Format thinking with custom styled block (escape HTML for safety)
escaped_think = escape_html(think_content)
formatted_content = (
f'<div class="thinking-block">\n'
f'<div class="thinking-header">💭 Thinking Process</div>\n'
f'<div class="thinking-content">{escaped_think}</div>\n'
f'</div>\n\n'
f'{response_content}'
)
history[-1]["content"] = formatted_content
else:
# Don't show thinking, replace with response message directly
history[-1]["content"] = response_content
else:
# Update thinking message with collapsible format (only if showing)
if show_thinking:
current_think = buffer
if current_think.startswith("<think>"):
current_think = current_think[len("<think>"):].strip()
escaped_think = escape_html(current_think)
formatted_content = (
f'<div class="thinking-block">\n'
f'<div class="thinking-header">💭 Thinking...</div>\n'
f'<div class="thinking-content">{escaped_think}</div>\n'
f'</div>'
)
history[-1]["content"] = formatted_content
else:
# Already split, update the combined message
parts = buffer.split("</think>", 1)
think_content = parts[0]
response_content = parts[1]
if think_content.startswith("<think>"):
think_content = think_content[len("<think>"):].strip()
if show_thinking:
# Update with formatted thinking + response
escaped_think = escape_html(think_content)
formatted_content = (
f'<div class="thinking-block">\n'
f'<div class="thinking-header">💭 Thinking Process</div>\n'
f'<div class="thinking-content">{escaped_think}</div>\n'
f'</div>\n\n'
f'{response_content}'
)
history[-1]["content"] = formatted_content
else:
# Only show response
history[-1]["content"] = response_content
yield history, new_used_audio_size, get_audio_size_info(new_used_audio_size, None)
except json.JSONDecodeError:
continue
# 请求成功完成
elapsed_time = time.time() - start_time
print(f"[API] ✅ SUCCESS - Time: {elapsed_time:.2f}s")
except httpx.ConnectError:
elapsed_time = time.time() - start_time
print(f"[API] ❌ FAILED - Connection error, Time: {elapsed_time:.2f}s")
history[-1]["content"] = "❌ Cannot connect to vLLM API"
yield history, new_used_audio_size, get_audio_size_info(new_used_audio_size, None)
except Exception as e:
elapsed_time = time.time() - start_time
print(f"[API] ❌ FAILED - Error: {str(e)}, Time: {elapsed_time:.2f}s")
history[-1]["content"] = f"❌ Error: {str(e)}"
yield history, new_used_audio_size, get_audio_size_info(new_used_audio_size, None)
# Custom CSS for better UI
custom_css = """
/* 全局样式 */
.gradio-container {
max-width: 100% !important;
font-family: -apple-system, BlinkMacSystemFont, "Segoe UI", Roboto, "Helvetica Neue", Arial, sans-serif;
}
/* 标题样式 */
.app-header {
text-align: center;
padding: 2.5rem 1.5rem;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
position: relative;
overflow: hidden;
border-radius: 16px;
margin-bottom: 1.5rem;
box-shadow: 0 8px 24px rgba(102, 126, 234, 0.35);
}
/* 标题背景装饰 */
.app-header::before {
content: '';
position: absolute;
top: -50%;
right: -50%;
width: 200%;
height: 200%;
background: radial-gradient(circle, rgba(255, 255, 255, 0.1) 0%, transparent 70%);
animation: rotate 20s linear infinite;
}
@keyframes rotate {
from { transform: rotate(0deg); }
to { transform: rotate(360deg); }
}
.app-header h1 {
margin: 0;
font-size: 2.8rem;
font-weight: 700;
color: white !important;
text-shadow: 0 3px 6px rgba(0, 0, 0, 0.25);
letter-spacing: 1px;
position: relative;
z-index: 1;
}
.app-header p {
color: rgba(255, 255, 255, 0.95) !important;
text-shadow: 0 2px 4px rgba(0, 0, 0, 0.2);
position: relative;
z-index: 1;
line-height: 1.5;
}
/* 聊天框样式 */
.chatbot-container {
border-radius: 12px;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.08);
overflow: hidden;
}
/* 思考过程样式 - 模仿Claude/ChatGPT的风格 */
.thinking-block {
background: linear-gradient(135deg, #f5f7fa 0%, #eef2f7 100%);
border-left: 4px solid #667eea;
padding: 16px 20px;
margin: 12px 0;
border-radius: 8px;
box-shadow: 0 2px 4px rgba(0, 0, 0, 0.05);
}
.thinking-header {
display: flex;
align-items: center;
font-weight: 600;
color: #667eea;
margin-bottom: 10px;
font-size: 0.95rem;
}
.thinking-content {
background: #ffffff;
padding: 12px 16px;
border-radius: 6px;
font-family: 'SF Mono', Monaco, 'Cascadia Code', 'Roboto Mono', Consolas, 'Courier New', monospace;
font-size: 0.9rem;
line-height: 1.6;
color: #374151;
white-space: pre-wrap;
word-wrap: break-word;
border: 1px solid #e5e7eb;
}
/* 回复分隔线 */
.response-divider {
border: none;
height: 2px;
background: linear-gradient(to right, transparent, #e5e7eb, transparent);
margin: 20px 0;
}
/* 按钮样式 */
.primary-btn {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
border: none !important;
transition: all 0.3s ease !important;
}
.primary-btn:hover {
transform: translateY(-2px);
box-shadow: 0 4px 12px rgba(102, 126, 234, 0.4) !important;
}
/* 左侧面板样式 */
.left-panel {
background: #f9fafb;
border-radius: 12px;
padding: 1rem;
height: 100%;
}
/* 输入框样式 */
.input-box textarea {
border-radius: 8px !important;
border: 2px solid #e5e7eb !important;
transition: border-color 0.3s ease !important;
}
.input-box textarea:focus {
border-color: #667eea !important;
box-shadow: 0 0 0 3px rgba(102, 126, 234, 0.1) !important;
}
/* 输入区域标题 */
h3 {
color: #374151;
font-size: 1.1rem;
margin: 1rem 0 0.5rem 0;
}
/* 聊天消息样式优化 */
.message-wrap {
padding: 1rem !important;
}
.message {
padding: 1rem !important;
border-radius: 12px !important;
line-height: 1.6 !important;
}
/* 用户消息 */
.message.user {
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%) !important;
color: white !important;
}
/* 助手消息 */
.message.bot {
background: #f9fafb !important;
border: 1px solid #e5e7eb !important;
}
/* 左侧面板整体样式 */
.left-column {
background: linear-gradient(to bottom, #ffffff 0%, #f9fafb 100%);
border-radius: 12px;
padding: 1rem;
box-shadow: 0 2px 8px rgba(0, 0, 0, 0.05);
}
/* 按钮容器样式 */
.button-row {
margin-top: 1rem;
gap: 0.5rem;
}
/* Dark Mode Support */
.dark .message.bot {
background: #1f2937 !important;
border: 1px solid #374151 !important;
color: #e5e7eb !important;
}
.dark .thinking-block {
background: linear-gradient(135deg, #1f2937 0%, #111827 100%);
border-left: 4px solid #4f46e5;
}
.dark .thinking-content {
background: #111827;
color: #e5e7eb;
border: 1px solid #374151;
}
.dark .thinking-header {
color: #818cf8;
}
.dark .left-panel {
background: #111827;
}
.dark .left-column {
background: linear-gradient(to bottom, #1f2937 0%, #111827 100%);
}
.dark .input-box textarea {
background-color: #1f2937;
border-color: #374151 !important;
color: #e5e7eb;
}
.dark h3 {
color: #e5e7eb;
}
/* 滚动条美化 */
::-webkit-scrollbar {
width: 8px;
height: 8px;
}
::-webkit-scrollbar-track {
background: #f1f1f1;
border-radius: 4px;
}
::-webkit-scrollbar-thumb {
background: #888;
border-radius: 4px;
}
::-webkit-scrollbar-thumb:hover {
background: #555;
}
"""
# Gradio Interface
with gr.Blocks(title="Step Audio R1", css=custom_css, theme=gr.themes.Soft()) as demo:
# Header
gr.HTML("""
<div class="app-header">
<h1 style="color: white;">🔊 Step-Audio-R1</h1>
<p style="color: white; margin: 0.8rem 0 0 0; opacity: 0.95; font-size: 1.15rem; font-weight: 500;">
Advanced Audio-Language Model with Reasoning
</p>
<p style="color: white; margin: 0.5rem 0 0 0; opacity: 0.85; font-size: 0.95rem;">
Comprehensive audio understanding: Speech, Sound, Music & Lyrics
</p>
</div>
""")
with gr.Row():
# Left Panel - Input Area
with gr.Column(scale=1, min_width=350):
# Configuration
with gr.Accordion("⚙️ Configuration", open=False):
system_prompt = gr.Textbox(
label="System Prompt",
lines=2,
value="You are a voice assistant with extensive experience in audio processing.",
placeholder="Enter system prompt...",
elem_classes=["input-box"]
)
max_tokens = gr.Slider(
1, 56000,
value=16384,
label="Max Tokens",
info="Maximum tokens to generate"
)
temperature = gr.Slider(
0.0, 2.0,
value=0.7,
label="Temperature",
info="Higher = more random"
)
top_p = gr.Slider(
0.0, 1.0,
value=0.9,
label="Top P",
info="Nucleus sampling"
)
show_thinking = gr.Checkbox(
label="💭 Show Thinking Process",
value=True,
info="Display reasoning steps"
)
# Input Area
gr.Markdown("### 📝 Your Input")
user_text = gr.Textbox(
label="Text Message",
lines=4,
placeholder="Type your message here...",
elem_classes=["input-box"],
show_label=False
)
audio_file = gr.Audio(
label="🎤 Audio Input",
type="filepath",
sources=["microphone", "upload"],
show_label=True
)
# Audio size limit info
audio_size_info = gr.Markdown(
value=f"📊 Audio limit: {MAX_AUDIO_SIZE_MB}MB total available",
elem_classes=["audio-size-info"]
)
# Buttons
with gr.Row():
clear_btn = gr.Button("🗑️ Clear", scale=1, size="lg")
submit_btn = gr.Button(
"🚀 Send",
variant="primary",
scale=2,
size="lg",
elem_classes=["primary-btn"]
)
# Usage Guide at bottom
with gr.Accordion("📖 Quick Guide", open=False):
gr.Markdown("""
**Usage:**
- Type text, upload audio, or both
- Audio > 25s auto-splits
- Toggle thinking process display
**Tips:**
- Thinking shown in blue gradient block
- History auto-cleaned for API
- Adjust params in Configuration
""")
# Right Panel - Conversation Area
with gr.Column(scale=2):
chatbot = gr.Chatbot(
label="💬 Conversation",
height=700,
type="messages",
elem_classes=["chatbot-container"],
show_label=True,
avatar_images=(None, None),
bubble_full_width=False
)
# State to track used audio size (in bytes)
used_audio_size = gr.State(value=0)
submit_btn.click(
fn=chat,
inputs=[system_prompt, user_text, audio_file, chatbot, used_audio_size, max_tokens, temperature, top_p, show_thinking],
outputs=[chatbot, used_audio_size, audio_size_info]
)
clear_btn.click(
fn=lambda: ([], 0, "", None, f"📊 Audio limit: {MAX_AUDIO_SIZE_MB}MB total available"),
outputs=[chatbot, used_audio_size, user_text, audio_file, audio_size_info]
)
# Update audio size info when audio file changes
audio_file.change(
fn=lambda audio, used_size: get_audio_size_info(used_size, audio),
inputs=[audio_file, used_audio_size],
outputs=[audio_size_info]
)
# Also listen to upload and stop_recording events
audio_file.upload(
fn=lambda audio, used_size: get_audio_size_info(used_size, audio),
inputs=[audio_file, used_audio_size],
outputs=[audio_size_info]
)
audio_file.stop_recording(
fn=lambda audio, used_size: get_audio_size_info(used_size, audio),
inputs=[audio_file, used_audio_size],
outputs=[audio_size_info]
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--host", default="0.0.0.0")
parser.add_argument("--port", type=int, default=7860)
parser.add_argument("--model", default=MODEL_NAME)
args = parser.parse_args()
# 更新全局模型名称
if args.model:
MODEL_NAME = args.model
print(f"启动Gradio: http://{args.host}:{args.port}")
print(f"API地址: {API_BASE_URL}")
print(f"模型: {MODEL_NAME}")
demo.launch(server_name=args.host, server_port=args.port, share=False)
|