Spaces:
Runtime error
Runtime error
| from flask import Flask, request, jsonify | |
| from peft import PeftModel, PeftConfig | |
| from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig | |
| import torch | |
| app = Flask(__name__) | |
| MODEL_NAME = "IlyaGusev/saiga2_70b_lora" | |
| DEFAULT_MESSAGE_TEMPLATE = "<s>{role}\n{content}</s>\n" | |
| DEFAULT_SYSTEM_PROMPT = "Ты — Сайга, русскоязычный автоматический ассистент. Ты разговариваешь с людьми и помогаешь им." | |
| class Conversation: | |
| def __init__( | |
| self, | |
| message_template=DEFAULT_MESSAGE_TEMPLATE, | |
| system_prompt=DEFAULT_SYSTEM_PROMPT, | |
| start_token_id=1, | |
| bot_token_id=9225 | |
| ): | |
| self.message_template = message_template | |
| self.start_token_id = start_token_id | |
| self.bot_token_id = bot_token_id | |
| self.messages = [{ | |
| "role": "system", | |
| "content": system_prompt | |
| }] | |
| def get_start_token_id(self): | |
| return self.start_token_id | |
| def get_bot_token_id(self): | |
| return self.bot_token_id | |
| def add_user_message(self, message): | |
| self.messages.append({ | |
| "role": "user", | |
| "content": message | |
| }) | |
| def add_bot_message(self, message): | |
| self.messages.append({ | |
| "role": "bot", | |
| "content": message | |
| }) | |
| def get_prompt(self, tokenizer): | |
| final_text = "" | |
| for message in self.messages: | |
| message_text = self.message_template.format(**message) | |
| final_text += message_text | |
| final_text += tokenizer.decode([self.start_token_id, self.bot_token_id]) | |
| return final_text.strip() | |
| def generate(model, tokenizer, prompt, generation_config): | |
| data = tokenizer(prompt, return_tensors="pt") | |
| data = {k: v.to(model.device) for k, v in data.items()} | |
| output_ids = model.generate( | |
| **data, | |
| generation_config=generation_config | |
| )[0] | |
| output_ids = output_ids[len(data["input_ids"][0]):] | |
| output = tokenizer.decode(output_ids, skip_special_tokens=True) | |
| return output.strip() | |
| config = PeftConfig.from_pretrained(MODEL_NAME) | |
| # Use GPU if available, else fall back to CPU | |
| device = "cuda" if torch.cuda.is_available() else "cpu" | |
| model = AutoModelForCausalLM.from_pretrained( | |
| config.base_model_name_or_path, | |
| load_in_8bit=False, | |
| torch_dtype=torch.float16, | |
| device_map=device | |
| ) | |
| model = PeftModel.from_pretrained( | |
| model, | |
| MODEL_NAME, | |
| torch_dtype=torch.float16 | |
| ) | |
| model.eval() | |
| tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, use_fast=False) | |
| generation_config = GenerationConfig.from_pretrained(MODEL_NAME) | |
| def run_inference(): | |
| try: | |
| data = request.json | |
| inputs = data.get('inputs', []) | |
| conversation = Conversation() | |
| outputs = [] | |
| for inp in inputs: | |
| conversation.add_user_message(inp) | |
| prompt = conversation.get_prompt(tokenizer) | |
| output = generate(model, tokenizer, prompt, generation_config) | |
| outputs.append({'input': inp, 'output': output}) | |
| return jsonify(outputs) | |
| except Exception as e: | |
| return jsonify({'error': str(e)}), 500 | |
| if __name__ == '__main__': | |
| app.run(port=7860) | |