Spaces:
Runtime error
Runtime error
Commit
·
1d3f775
1
Parent(s):
cd0d99e
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import cv2
|
| 4 |
+
from PIL import Image
|
| 5 |
+
from ultralytics import YOLO
|
| 6 |
+
|
| 7 |
+
# Define available YOLO models
|
| 8 |
+
available_models = {
|
| 9 |
+
"Model 1 (best.pt)": YOLO("best.pt"),
|
| 10 |
+
"Model 2 (another_model.pt)": YOLO("another_model.pt"),
|
| 11 |
+
# Add more models as needed
|
| 12 |
+
}
|
| 13 |
+
|
| 14 |
+
# Create a function to perform image segmentation using the selected model
|
| 15 |
+
def segment_image(input_image, selected_model):
|
| 16 |
+
# Resize the input image to 255x255
|
| 17 |
+
img = np.array(input_image)
|
| 18 |
+
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
| 19 |
+
|
| 20 |
+
# Perform object detection and segmentation using the selected model
|
| 21 |
+
model = available_models[selected_model]
|
| 22 |
+
results = model(img)
|
| 23 |
+
mask = results[0].masks.data.numpy()
|
| 24 |
+
target_height = img.shape[0]
|
| 25 |
+
target_width = img.shape[1]
|
| 26 |
+
|
| 27 |
+
# Resize the mask using OpenCV
|
| 28 |
+
resized_mask = cv2.resize(mask[0], (target_width, target_height))
|
| 29 |
+
resized_mask = (resized_mask * 255).astype(np.uint8)
|
| 30 |
+
|
| 31 |
+
# Create a copy of the original image
|
| 32 |
+
overlay_image = img.copy()
|
| 33 |
+
|
| 34 |
+
# Apply the resized mask to the overlay image
|
| 35 |
+
overlay_image[resized_mask > 0] = [100, 0, 0] # Overlay in green
|
| 36 |
+
|
| 37 |
+
# Convert the overlay image to PIL format
|
| 38 |
+
overlay_pil = Image.fromarray(overlay_image)
|
| 39 |
+
|
| 40 |
+
return overlay_pil
|
| 41 |
+
|
| 42 |
+
# Create the Gradio interface with a dropdown for model selection
|
| 43 |
+
iface = gr.Interface(
|
| 44 |
+
fn=segment_image,
|
| 45 |
+
inputs=[
|
| 46 |
+
gr.inputs.Image(type="pil", label="Upload an image"),
|
| 47 |
+
gr.inputs.Dropdown(
|
| 48 |
+
choices=list(available_models.keys()),
|
| 49 |
+
label="Select YOLO Model",
|
| 50 |
+
default="Model 1 (best.pt)"
|
| 51 |
+
)
|
| 52 |
+
],
|
| 53 |
+
outputs=gr.outputs.Image(type="numpy", label="Segmented Image"),
|
| 54 |
+
title="Aorta segmentation and Detection using YOLOv8 😃",
|
| 55 |
+
description='This software generates the segmentation mask for Aorta for Point of Care Ultrasound (POCUS) images'
|
| 56 |
+
)
|
| 57 |
+
|
| 58 |
+
iface.launch()
|