Spaces:
Runtime error
Runtime error
| # coding: utf-8 | |
| import argparse | |
| import logging | |
| import os | |
| import pathlib | |
| import time | |
| import tempfile | |
| import platform | |
| import webbrowser | |
| import sys | |
| print(f"default encoding is {sys.getdefaultencoding()},file system encoding is {sys.getfilesystemencoding()}") | |
| print(f"You are using Python version {platform.python_version()}") | |
| if(sys.version_info[0]<3 or sys.version_info[1]<7): | |
| print("The Python version is too low and may cause problems") | |
| if platform.system().lower() == 'windows': | |
| temp = pathlib.PosixPath | |
| pathlib.PosixPath = pathlib.WindowsPath | |
| else: | |
| temp = pathlib.WindowsPath | |
| pathlib.WindowsPath = pathlib.PosixPath | |
| os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python" | |
| import langid | |
| langid.set_languages(['en', 'zh', 'ja']) | |
| import nltk | |
| nltk.data.path = nltk.data.path + [os.path.join(os.getcwd(), "nltk_data")] | |
| import torch | |
| import torchaudio | |
| import random | |
| import numpy as np | |
| from data.tokenizer import ( | |
| AudioTokenizer, | |
| tokenize_audio, | |
| ) | |
| from data.collation import get_text_token_collater | |
| from models.vallex import VALLE | |
| from utils.g2p import PhonemeBpeTokenizer | |
| from descriptions import * | |
| from macros import * | |
| from examples import * | |
| import gradio as gr | |
| import whisper | |
| from vocos import Vocos | |
| import multiprocessing | |
| thread_count = multiprocessing.cpu_count() | |
| print("Use",thread_count,"cpu cores for computing") | |
| torch.set_num_threads(thread_count) | |
| torch.set_num_interop_threads(thread_count) | |
| torch._C._jit_set_profiling_executor(False) | |
| torch._C._jit_set_profiling_mode(False) | |
| torch._C._set_graph_executor_optimize(False) | |
| text_tokenizer = PhonemeBpeTokenizer(tokenizer_path="./utils/g2p/bpe_69.json") | |
| text_collater = get_text_token_collater() | |
| device = torch.device("cpu") | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda", 0) | |
| if torch.backends.mps.is_available(): | |
| device = torch.device("mps") | |
| # VALL-E-X model | |
| if not os.path.exists("./checkpoints/"): os.mkdir("./checkpoints/") | |
| if not os.path.exists(os.path.join("./checkpoints/", "vallex-checkpoint.pt")): | |
| import wget | |
| try: | |
| logging.info("Downloading model from https://huggingface.co/Plachta/VALL-E-X/resolve/main/vallex-checkpoint.pt ...") | |
| # download from https://huggingface.co/Plachta/VALL-E-X/resolve/main/vallex-checkpoint.pt to ./checkpoints/vallex-checkpoint.pt | |
| wget.download("https://huggingface.co/Plachta/VALL-E-X/resolve/main/vallex-checkpoint.pt", | |
| out="./checkpoints/vallex-checkpoint.pt", bar=wget.bar_adaptive) | |
| except Exception as e: | |
| logging.info(e) | |
| raise Exception( | |
| "\n Model weights download failed, please go to 'https://huggingface.co/Plachta/VALL-E-X/resolve/main/vallex-checkpoint.pt'" | |
| "\n manually download model weights and put it to {} .".format(os.getcwd() + "\checkpoints")) | |
| model = VALLE( | |
| N_DIM, | |
| NUM_HEAD, | |
| NUM_LAYERS, | |
| norm_first=True, | |
| add_prenet=False, | |
| prefix_mode=PREFIX_MODE, | |
| share_embedding=True, | |
| nar_scale_factor=1.0, | |
| prepend_bos=True, | |
| num_quantizers=NUM_QUANTIZERS, | |
| ) | |
| checkpoint = torch.load("./checkpoints/vallex-checkpoint.pt", map_location='cpu') | |
| missing_keys, unexpected_keys = model.load_state_dict( | |
| checkpoint["model"], strict=True | |
| ) | |
| assert not missing_keys | |
| model.eval() | |
| # Encodec model | |
| audio_tokenizer = AudioTokenizer(device) | |
| # Vocos decoder | |
| vocos = Vocos.from_pretrained('charactr/vocos-encodec-24khz').to(device) | |
| # ASR | |
| if not os.path.exists("./whisper/"): os.mkdir("./whisper/") | |
| try: | |
| whisper_model = whisper.load_model("medium",download_root=os.path.join(os.getcwd(), "whisper")).cpu() | |
| except Exception as e: | |
| logging.info(e) | |
| raise Exception( | |
| "\n Whisper download failed or damaged, please go to " | |
| "'https://openaipublic.azureedge.net/main/whisper/models/345ae4da62f9b3d59415adc60127b97c714f32e89e936602e85993674d08dcb1/medium.pt'" | |
| "\n manually download model and put it to {} .".format(os.getcwd() + "\whisper")) | |
| # Voice Presets | |
| preset_list = os.walk("./presets/").__next__()[2] | |
| preset_list = [preset[:-4] for preset in preset_list if preset.endswith(".npz")] | |
| def clear_prompts(): | |
| try: | |
| path = tempfile.gettempdir() | |
| for eachfile in os.listdir(path): | |
| filename = os.path.join(path, eachfile) | |
| if os.path.isfile(filename) and filename.endswith(".npz"): | |
| lastmodifytime = os.stat(filename).st_mtime | |
| endfiletime = time.time() - 60 | |
| if endfiletime > lastmodifytime: | |
| os.remove(filename) | |
| except: | |
| return | |
| def transcribe_one(model, audio_path): | |
| # load audio and pad/trim it to fit 30 seconds | |
| audio = whisper.load_audio(audio_path) | |
| audio = whisper.pad_or_trim(audio) | |
| # make log-Mel spectrogram and move to the same device as the model | |
| mel = whisper.log_mel_spectrogram(audio).to(model.device) | |
| # detect the spoken language | |
| _, probs = model.detect_language(mel) | |
| print(f"Detected language: {max(probs, key=probs.get)}") | |
| lang = max(probs, key=probs.get) | |
| # decode the audio | |
| options = whisper.DecodingOptions(temperature=1.0, best_of=5, fp16=False if device == torch.device("cpu") else True, sample_len=150) | |
| result = whisper.decode(model, mel, options) | |
| # print the recognized text | |
| print(result.text) | |
| text_pr = result.text | |
| if text_pr.strip(" ")[-1] not in "?!.,。,?!。、": | |
| text_pr += "." | |
| return lang, text_pr | |
| def make_npz_prompt(name, uploaded_audio, recorded_audio, transcript_content): | |
| global model, text_collater, text_tokenizer, audio_tokenizer | |
| clear_prompts() | |
| audio_prompt = uploaded_audio if uploaded_audio is not None else recorded_audio | |
| sr, wav_pr = audio_prompt | |
| if not isinstance(wav_pr, torch.FloatTensor): | |
| wav_pr = torch.FloatTensor(wav_pr) | |
| if wav_pr.abs().max() > 1: | |
| wav_pr /= wav_pr.abs().max() | |
| if wav_pr.size(-1) == 2: | |
| wav_pr = wav_pr[:, 0] | |
| if wav_pr.ndim == 1: | |
| wav_pr = wav_pr.unsqueeze(0) | |
| assert wav_pr.ndim and wav_pr.size(0) == 1 | |
| if transcript_content == "": | |
| text_pr, lang_pr = make_prompt(name, wav_pr, sr, save=False) | |
| else: | |
| lang_pr = langid.classify(str(transcript_content))[0] | |
| lang_token = lang2token[lang_pr] | |
| text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" | |
| # tokenize audio | |
| encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
| audio_tokens = encoded_frames[0][0].transpose(2, 1).cpu().numpy() | |
| # tokenize text | |
| phonemes, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
| text_tokens, enroll_x_lens = text_collater( | |
| [ | |
| phonemes | |
| ] | |
| ) | |
| message = f"Detected language: {lang_pr}\n Detected text {text_pr}\n" | |
| # save as npz file | |
| np.savez(os.path.join(tempfile.gettempdir(), f"{name}.npz"), | |
| audio_tokens=audio_tokens, text_tokens=text_tokens, lang_code=lang2code[lang_pr]) | |
| return message, os.path.join(tempfile.gettempdir(), f"{name}.npz") | |
| def make_prompt(name, wav, sr, save=True): | |
| global whisper_model | |
| whisper_model.to(device) | |
| if not isinstance(wav, torch.FloatTensor): | |
| wav = torch.tensor(wav) | |
| if wav.abs().max() > 1: | |
| wav /= wav.abs().max() | |
| if wav.size(-1) == 2: | |
| wav = wav.mean(-1, keepdim=False) | |
| if wav.ndim == 1: | |
| wav = wav.unsqueeze(0) | |
| assert wav.ndim and wav.size(0) == 1 | |
| torchaudio.save(f"./prompts/{name}.wav", wav, sr) | |
| lang, text = transcribe_one(whisper_model, f"./prompts/{name}.wav") | |
| lang_token = lang2token[lang] | |
| text = lang_token + text + lang_token | |
| with open(f"./prompts/{name}.txt", 'w', encoding='utf-8') as f: | |
| f.write(text) | |
| if not save: | |
| os.remove(f"./prompts/{name}.wav") | |
| os.remove(f"./prompts/{name}.txt") | |
| whisper_model.cpu() | |
| torch.cuda.empty_cache() | |
| return text, lang | |
| def infer_from_audio(text, language, accent, audio_prompt, record_audio_prompt, transcript_content): | |
| global model, text_collater, text_tokenizer, audio_tokenizer | |
| audio_prompt = audio_prompt if audio_prompt is not None else record_audio_prompt | |
| sr, wav_pr = audio_prompt | |
| if not isinstance(wav_pr, torch.FloatTensor): | |
| wav_pr = torch.FloatTensor(wav_pr) | |
| if wav_pr.abs().max() > 1: | |
| wav_pr /= wav_pr.abs().max() | |
| if wav_pr.size(-1) == 2: | |
| wav_pr = wav_pr[:, 0] | |
| if wav_pr.ndim == 1: | |
| wav_pr = wav_pr.unsqueeze(0) | |
| assert wav_pr.ndim and wav_pr.size(0) == 1 | |
| if transcript_content == "": | |
| text_pr, lang_pr = make_prompt('dummy', wav_pr, sr, save=False) | |
| else: | |
| lang_pr = langid.classify(str(transcript_content))[0] | |
| lang_token = lang2token[lang_pr] | |
| text_pr = f"{lang_token}{str(transcript_content)}{lang_token}" | |
| if language == 'auto-detect': | |
| lang_token = lang2token[langid.classify(text)[0]] | |
| else: | |
| lang_token = langdropdown2token[language] | |
| lang = token2lang[lang_token] | |
| text = lang_token + text + lang_token | |
| # onload model | |
| model.to(device) | |
| # tokenize audio | |
| encoded_frames = tokenize_audio(audio_tokenizer, (wav_pr, sr)) | |
| audio_prompts = encoded_frames[0][0].transpose(2, 1).to(device) | |
| # tokenize text | |
| logging.info(f"synthesize text: {text}") | |
| phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
| text_tokens, text_tokens_lens = text_collater( | |
| [ | |
| phone_tokens | |
| ] | |
| ) | |
| enroll_x_lens = None | |
| if text_pr: | |
| text_prompts, _ = text_tokenizer.tokenize(text=f"{text_pr}".strip()) | |
| text_prompts, enroll_x_lens = text_collater( | |
| [ | |
| text_prompts | |
| ] | |
| ) | |
| text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
| text_tokens_lens += enroll_x_lens | |
| lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
| encoded_frames = model.inference( | |
| text_tokens.to(device), | |
| text_tokens_lens.to(device), | |
| audio_prompts, | |
| enroll_x_lens=enroll_x_lens, | |
| top_k=-100, | |
| temperature=1, | |
| prompt_language=lang_pr, | |
| text_language=langs if accent == "no-accent" else lang, | |
| best_of=5, | |
| ) | |
| # Decode with Vocos | |
| frames = encoded_frames.permute(2,0,1) | |
| features = vocos.codes_to_features(frames) | |
| samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
| # offload model | |
| model.to('cpu') | |
| torch.cuda.empty_cache() | |
| message = f"text prompt: {text_pr}\nsythesized text: {text}" | |
| return message, (24000, samples.squeeze(0).cpu().numpy()) | |
| def infer_from_prompt(text, language, accent, preset_prompt, prompt_file): | |
| clear_prompts() | |
| model.to(device) | |
| # text to synthesize | |
| if language == 'auto-detect': | |
| lang_token = lang2token[langid.classify(text)[0]] | |
| else: | |
| lang_token = langdropdown2token[language] | |
| lang = token2lang[lang_token] | |
| text = lang_token + text + lang_token | |
| # load prompt | |
| if prompt_file is not None: | |
| prompt_data = np.load(prompt_file.name) | |
| else: | |
| prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
| audio_prompts = prompt_data['audio_tokens'] | |
| text_prompts = prompt_data['text_tokens'] | |
| lang_pr = prompt_data['lang_code'] | |
| lang_pr = code2lang[int(lang_pr)] | |
| # numpy to tensor | |
| audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
| text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
| enroll_x_lens = text_prompts.shape[-1] | |
| logging.info(f"synthesize text: {text}") | |
| phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
| text_tokens, text_tokens_lens = text_collater( | |
| [ | |
| phone_tokens | |
| ] | |
| ) | |
| text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
| text_tokens_lens += enroll_x_lens | |
| # accent control | |
| lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
| encoded_frames = model.inference( | |
| text_tokens.to(device), | |
| text_tokens_lens.to(device), | |
| audio_prompts, | |
| enroll_x_lens=enroll_x_lens, | |
| top_k=-100, | |
| temperature=1, | |
| prompt_language=lang_pr, | |
| text_language=langs if accent == "no-accent" else lang, | |
| best_of=5, | |
| ) | |
| # Decode with Vocos | |
| frames = encoded_frames.permute(2,0,1) | |
| features = vocos.codes_to_features(frames) | |
| samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
| model.to('cpu') | |
| torch.cuda.empty_cache() | |
| message = f"sythesized text: {text}" | |
| return message, (24000, samples.squeeze(0).cpu().numpy()) | |
| from utils.sentence_cutter import split_text_into_sentences | |
| def infer_long_text(text, preset_prompt, prompt=None, language='auto', accent='no-accent'): | |
| """ | |
| For long audio generation, two modes are available. | |
| fixed-prompt: This mode will keep using the same prompt the user has provided, and generate audio sentence by sentence. | |
| sliding-window: This mode will use the last sentence as the prompt for the next sentence, but has some concern on speaker maintenance. | |
| """ | |
| mode = 'fixed-prompt' | |
| global model, audio_tokenizer, text_tokenizer, text_collater | |
| model.to(device) | |
| if (prompt is None or prompt == "") and preset_prompt == "": | |
| mode = 'sliding-window' # If no prompt is given, use sliding-window mode | |
| sentences = split_text_into_sentences(text) | |
| # detect language | |
| if language == "auto-detect": | |
| language = langid.classify(text)[0] | |
| else: | |
| language = token2lang[langdropdown2token[language]] | |
| # if initial prompt is given, encode it | |
| if prompt is not None and prompt != "": | |
| # load prompt | |
| prompt_data = np.load(prompt.name) | |
| audio_prompts = prompt_data['audio_tokens'] | |
| text_prompts = prompt_data['text_tokens'] | |
| lang_pr = prompt_data['lang_code'] | |
| lang_pr = code2lang[int(lang_pr)] | |
| # numpy to tensor | |
| audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
| text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
| elif preset_prompt is not None and preset_prompt != "": | |
| prompt_data = np.load(os.path.join("./presets/", f"{preset_prompt}.npz")) | |
| audio_prompts = prompt_data['audio_tokens'] | |
| text_prompts = prompt_data['text_tokens'] | |
| lang_pr = prompt_data['lang_code'] | |
| lang_pr = code2lang[int(lang_pr)] | |
| # numpy to tensor | |
| audio_prompts = torch.tensor(audio_prompts).type(torch.int32).to(device) | |
| text_prompts = torch.tensor(text_prompts).type(torch.int32) | |
| else: | |
| audio_prompts = torch.zeros([1, 0, NUM_QUANTIZERS]).type(torch.int32).to(device) | |
| text_prompts = torch.zeros([1, 0]).type(torch.int32) | |
| lang_pr = language if language != 'mix' else 'en' | |
| if mode == 'fixed-prompt': | |
| complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
| for text in sentences: | |
| text = text.replace("\n", "").strip(" ") | |
| if text == "": | |
| continue | |
| lang_token = lang2token[language] | |
| lang = token2lang[lang_token] | |
| text = lang_token + text + lang_token | |
| enroll_x_lens = text_prompts.shape[-1] | |
| logging.info(f"synthesize text: {text}") | |
| phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
| text_tokens, text_tokens_lens = text_collater( | |
| [ | |
| phone_tokens | |
| ] | |
| ) | |
| text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
| text_tokens_lens += enroll_x_lens | |
| # accent control | |
| lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
| encoded_frames = model.inference( | |
| text_tokens.to(device), | |
| text_tokens_lens.to(device), | |
| audio_prompts, | |
| enroll_x_lens=enroll_x_lens, | |
| top_k=-100, | |
| temperature=1, | |
| prompt_language=lang_pr, | |
| text_language=langs if accent == "no-accent" else lang, | |
| best_of=5, | |
| ) | |
| complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
| # Decode with Vocos | |
| frames = complete_tokens.permute(1, 0, 2) | |
| features = vocos.codes_to_features(frames) | |
| samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
| model.to('cpu') | |
| message = f"Cut into {len(sentences)} sentences" | |
| return message, (24000, samples.squeeze(0).cpu().numpy()) | |
| elif mode == "sliding-window": | |
| complete_tokens = torch.zeros([1, NUM_QUANTIZERS, 0]).type(torch.LongTensor).to(device) | |
| original_audio_prompts = audio_prompts | |
| original_text_prompts = text_prompts | |
| for text in sentences: | |
| text = text.replace("\n", "").strip(" ") | |
| if text == "": | |
| continue | |
| lang_token = lang2token[language] | |
| lang = token2lang[lang_token] | |
| text = lang_token + text + lang_token | |
| enroll_x_lens = text_prompts.shape[-1] | |
| logging.info(f"synthesize text: {text}") | |
| phone_tokens, langs = text_tokenizer.tokenize(text=f"_{text}".strip()) | |
| text_tokens, text_tokens_lens = text_collater( | |
| [ | |
| phone_tokens | |
| ] | |
| ) | |
| text_tokens = torch.cat([text_prompts, text_tokens], dim=-1) | |
| text_tokens_lens += enroll_x_lens | |
| # accent control | |
| lang = lang if accent == "no-accent" else token2lang[langdropdown2token[accent]] | |
| encoded_frames = model.inference( | |
| text_tokens.to(device), | |
| text_tokens_lens.to(device), | |
| audio_prompts, | |
| enroll_x_lens=enroll_x_lens, | |
| top_k=-100, | |
| temperature=1, | |
| prompt_language=lang_pr, | |
| text_language=langs if accent == "no-accent" else lang, | |
| best_of=5, | |
| ) | |
| complete_tokens = torch.cat([complete_tokens, encoded_frames.transpose(2, 1)], dim=-1) | |
| if torch.rand(1) < 1.0: | |
| audio_prompts = encoded_frames[:, :, -NUM_QUANTIZERS:] | |
| text_prompts = text_tokens[:, enroll_x_lens:] | |
| else: | |
| audio_prompts = original_audio_prompts | |
| text_prompts = original_text_prompts | |
| # Decode with Vocos | |
| frames = complete_tokens.permute(1, 0, 2) | |
| features = vocos.codes_to_features(frames) | |
| samples = vocos.decode(features, bandwidth_id=torch.tensor([2], device=device)) | |
| model.to('cpu') | |
| message = f"Cut into {len(sentences)} sentences" | |
| return message, (24000, samples.squeeze(0).cpu().numpy()) | |
| else: | |
| raise ValueError(f"No such mode {mode}") | |
| def main(): | |
| app = gr.Blocks(title="VALL-E X") | |
| with app: | |
| gr.Markdown(top_md) | |
| with gr.Tab("Infer from audio"): | |
| gr.Markdown(infer_from_audio_md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox = gr.TextArea(label="Text", | |
| placeholder="Type your sentence here", | |
| value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") | |
| language_dropdown = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', label='language') | |
| accent_dropdown = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', label='accent') | |
| textbox_transcript = gr.TextArea(label="Transcript", | |
| placeholder="Write transcript here. (leave empty to use whisper)", | |
| value="", elem_id=f"prompt-name") | |
| upload_audio_prompt = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
| record_audio_prompt = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
| with gr.Column(): | |
| text_output = gr.Textbox(label="Message") | |
| audio_output = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
| btn = gr.Button("Generate!") | |
| btn.click(infer_from_audio, | |
| inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], | |
| outputs=[text_output, audio_output]) | |
| textbox_mp = gr.TextArea(label="Prompt name", | |
| placeholder="Name your prompt here", | |
| value="prompt_1", elem_id=f"prompt-name") | |
| btn_mp = gr.Button("Make prompt!") | |
| prompt_output = gr.File(interactive=False) | |
| btn_mp.click(make_npz_prompt, | |
| inputs=[textbox_mp, upload_audio_prompt, record_audio_prompt, textbox_transcript], | |
| outputs=[text_output, prompt_output]) | |
| gr.Examples(examples=infer_from_audio_examples, | |
| inputs=[textbox, language_dropdown, accent_dropdown, upload_audio_prompt, record_audio_prompt, textbox_transcript], | |
| outputs=[text_output, audio_output], | |
| fn=infer_from_audio, | |
| cache_examples=False,) | |
| with gr.Tab("Make prompt"): | |
| gr.Markdown(make_prompt_md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox2 = gr.TextArea(label="Prompt name", | |
| placeholder="Name your prompt here", | |
| value="prompt_1", elem_id=f"prompt-name") | |
| # 添加选择语言和输入台本的地方 | |
| textbox_transcript2 = gr.TextArea(label="Transcript", | |
| placeholder="Write transcript here. (leave empty to use whisper)", | |
| value="", elem_id=f"prompt-name") | |
| upload_audio_prompt_2 = gr.Audio(label='uploaded audio prompt', source='upload', interactive=True) | |
| record_audio_prompt_2 = gr.Audio(label='recorded audio prompt', source='microphone', interactive=True) | |
| with gr.Column(): | |
| text_output_2 = gr.Textbox(label="Message") | |
| prompt_output_2 = gr.File(interactive=False) | |
| btn_2 = gr.Button("Make!") | |
| btn_2.click(make_npz_prompt, | |
| inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], | |
| outputs=[text_output_2, prompt_output_2]) | |
| gr.Examples(examples=make_npz_prompt_examples, | |
| inputs=[textbox2, upload_audio_prompt_2, record_audio_prompt_2, textbox_transcript2], | |
| outputs=[text_output_2, prompt_output_2], | |
| fn=make_npz_prompt, | |
| cache_examples=False,) | |
| with gr.Tab("Infer from prompt"): | |
| gr.Markdown(infer_from_prompt_md) | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox_3 = gr.TextArea(label="Text", | |
| placeholder="Type your sentence here", | |
| value="Welcome back, Master. What can I do for you today?", elem_id=f"tts-input") | |
| language_dropdown_3 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語', 'Mix'], value='auto-detect', | |
| label='language') | |
| accent_dropdown_3 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
| label='accent') | |
| preset_dropdown_3 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') | |
| prompt_file = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
| with gr.Column(): | |
| text_output_3 = gr.Textbox(label="Message") | |
| audio_output_3 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
| btn_3 = gr.Button("Generate!") | |
| btn_3.click(infer_from_prompt, | |
| inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], | |
| outputs=[text_output_3, audio_output_3]) | |
| gr.Examples(examples=infer_from_prompt_examples, | |
| inputs=[textbox_3, language_dropdown_3, accent_dropdown_3, preset_dropdown_3, prompt_file], | |
| outputs=[text_output_3, audio_output_3], | |
| fn=infer_from_prompt, | |
| cache_examples=False,) | |
| with gr.Tab("Infer long text"): | |
| gr.Markdown("This is a long text generation demo. You can use this to generate long audio. ") | |
| with gr.Row(): | |
| with gr.Column(): | |
| textbox_4 = gr.TextArea(label="Text", | |
| placeholder="Type your sentence here", | |
| value=long_text_example, elem_id=f"tts-input") | |
| language_dropdown_4 = gr.Dropdown(choices=['auto-detect', 'English', '中文', '日本語'], value='auto-detect', | |
| label='language') | |
| accent_dropdown_4 = gr.Dropdown(choices=['no-accent', 'English', '中文', '日本語'], value='no-accent', | |
| label='accent') | |
| preset_dropdown_4 = gr.Dropdown(choices=preset_list, value=None, label='Voice preset') | |
| prompt_file_4 = gr.File(file_count='single', file_types=['.npz'], interactive=True) | |
| with gr.Column(): | |
| text_output_4 = gr.TextArea(label="Message") | |
| audio_output_4 = gr.Audio(label="Output Audio", elem_id="tts-audio") | |
| btn_4 = gr.Button("Generate!") | |
| btn_4.click(infer_long_text, | |
| inputs=[textbox_4, preset_dropdown_4, prompt_file_4, language_dropdown_4, accent_dropdown_4], | |
| outputs=[text_output_4, audio_output_4]) | |
| webbrowser.open("http://127.0.0.1:7860") | |
| app.launch() | |
| if __name__ == "__main__": | |
| formatter = ( | |
| "%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s" | |
| ) | |
| logging.basicConfig(format=formatter, level=logging.INFO) | |
| main() | |