Spaces:
Running
Running
| import streamlit as st | |
| from teapotai import TeapotAI, TeapotAISettings | |
| import hashlib | |
| import os | |
| import requests | |
| import time | |
| from langsmith import traceable | |
| def log_time(func): | |
| def wrapper(*args, **kwargs): | |
| start_time = time.time() | |
| result = func(*args, **kwargs) | |
| end_time = time.time() | |
| print(f"{func.__name__} executed in {end_time - start_time:.4f} seconds") | |
| return result | |
| return wrapper | |
| default_documents = [] | |
| API_KEY = os.environ.get("brave_api_key") | |
| def brave_search(query, count=3): | |
| url = "https://api.search.brave.com/res/v1/web/search" | |
| headers = {"Accept": "application/json", "X-Subscription-Token": API_KEY} | |
| params = {"q": query, "count": count} | |
| response = requests.get(url, headers=headers, params=params) | |
| if response.status_code == 200: | |
| results = response.json().get("web", {}).get("results", []) | |
| print(results) | |
| return [(res["title"], res["description"], res["url"]) for res in results] | |
| else: | |
| print(f"Error: {response.status_code}, {response.text}") | |
| return [] | |
| def query_teapot(prompt, context, user_input, teapot_ai): | |
| response = teapot_ai.query( | |
| context=prompt+"\n"+context, | |
| query=user_input | |
| ) | |
| return response | |
| def handle_chat(user_input, teapot_ai): | |
| results = brave_search(user_input) | |
| documents = [desc.replace('<strong>','').replace('</strong>','') for _, desc, _ in results] | |
| st.sidebar.write("---") | |
| st.sidebar.write("## RAG Documents") | |
| for (title, description, url) in results: | |
| # Display Results | |
| st.sidebar.write(f"## {title}") | |
| st.sidebar.write(f"{description.replace('<strong>','').replace('</strong>','')}") | |
| st.sidebar.write(f"[Source]({url})") | |
| st.sidebar.write("---") | |
| context = "\n".join(documents) | |
| prompt = "You are Teapot, an open-source AI assistant optimized for low-end devices, providing short, accurate responses without hallucinating while excelling at information extraction and text summarization." | |
| response = query_teapot(prompt, context, user_input, teapot_ai) | |
| return response | |
| def suggestion_button(suggestion_text, teapot_ai): | |
| if st.button(suggestion_text): | |
| handle_chat(suggestion_text, teapot_ai) | |
| def hash_documents(documents): | |
| return hashlib.sha256("\n".join(documents).encode("utf-8")).hexdigest() | |
| def main(): | |
| st.set_page_config(page_title="TeapotAI Chat", page_icon=":robot_face:", layout="wide") | |
| st.sidebar.header("Retrieval Augmented Generation") | |
| user_documents = st.sidebar.text_area("Enter documents, each on a new line", value="\n".join(default_documents)) | |
| documents = [doc.strip() for doc in user_documents.split("\n") if doc.strip()] | |
| new_documents_hash = hash_documents(documents) | |
| if "documents_hash" not in st.session_state or st.session_state.documents_hash != new_documents_hash: | |
| with st.spinner('Loading Model and Embeddings...'): | |
| start_time = time.time() | |
| teapot_ai = TeapotAI(documents=documents or default_documents, settings=TeapotAISettings(rag_num_results=3)) | |
| end_time = time.time() | |
| print(f"Model loaded in {end_time - start_time:.4f} seconds") | |
| st.session_state.documents_hash = new_documents_hash | |
| st.session_state.teapot_ai = teapot_ai | |
| else: | |
| teapot_ai = st.session_state.teapot_ai | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [{"role": "assistant", "content": "Hi, I am Teapot AI, how can I help you?"}] | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.markdown(message["content"]) | |
| user_input = st.chat_input("Ask me anything") | |
| s1, s2, s3 = st.columns([1, 2, 3]) | |
| with s1: | |
| suggestion_button("Tell me about the varieties of tea", teapot_ai) | |
| with s2: | |
| suggestion_button("Who was born first, Alan Turing or John von Neumann?", teapot_ai) | |
| with s3: | |
| suggestion_button("Extract Google's stock price", teapot_ai) | |
| if user_input: | |
| with st.chat_message("user"): | |
| st.markdown(user_input) | |
| st.session_state.messages.append({"role": "user", "content": user_input}) | |
| with st.spinner('Generating Response...'): | |
| response = handle_chat(user_input, teapot_ai) | |
| with st.chat_message("assistant"): | |
| st.markdown(response) | |
| st.session_state.messages.append({"role": "assistant", "content": response}) | |
| st.markdown("### Suggested Questions") | |
| if __name__ == "__main__": | |
| main() | |