Spaces:
Sleeping
Sleeping
Stepan
commited on
Commit
·
da83cd6
1
Parent(s):
2614015
Test dataset improvements
Browse files- .gitignore +1 -0
- README.md +92 -0
- rag_pipeline.py +8 -7
- ragas_eval.py +188 -0
- ragas_evaluation_results.json +0 -0
- requirements.txt +2 -1
- testset.json → testset.jsonl +0 -0
- testset_generation.py +6 -3
.gitignore
CHANGED
|
@@ -2,3 +2,4 @@
|
|
| 2 |
__pycache__
|
| 3 |
.streamlit
|
| 4 |
qdrant_data/.lock
|
|
|
|
|
|
| 2 |
__pycache__
|
| 3 |
.streamlit
|
| 4 |
qdrant_data/.lock
|
| 5 |
+
.env
|
README.md
CHANGED
|
@@ -10,3 +10,95 @@ pinned: false
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 13 |
+
|
| 14 |
+
# LTU Chat RAG Evaluation
|
| 15 |
+
|
| 16 |
+
This repository contains a RAG (Retrieval-Augmented Generation) pipeline for the LTU (Luleå University of Technology) programme data, along with evaluation tools using Ragas.
|
| 17 |
+
|
| 18 |
+
## Overview
|
| 19 |
+
|
| 20 |
+
The system uses:
|
| 21 |
+
- **Qdrant**: Vector database for storing and retrieving embeddings
|
| 22 |
+
- **Haystack**: Framework for building the RAG pipeline
|
| 23 |
+
- **Ragas**: Framework for evaluating RAG systems
|
| 24 |
+
|
| 25 |
+
## Files
|
| 26 |
+
|
| 27 |
+
- `rag_pipeline.py`: Main RAG pipeline implementation
|
| 28 |
+
- `ragas_eval.py`: Script to evaluate the RAG pipeline using Ragas
|
| 29 |
+
- `testset.json`: JSONL file containing test questions, reference answers, and contexts
|
| 30 |
+
- `testset_generation.py`: Script used to generate the test set
|
| 31 |
+
|
| 32 |
+
## Requirements
|
| 33 |
+
|
| 34 |
+
```
|
| 35 |
+
streamlit==1.42.2
|
| 36 |
+
haystack-ai==2.10.3
|
| 37 |
+
qdrant-client==1.13.2
|
| 38 |
+
python-dotenv==1.0.1
|
| 39 |
+
beautifulsoup4==4.13.3
|
| 40 |
+
qdrant-haystack==8.0.0
|
| 41 |
+
ragas-haystack==2.1.0
|
| 42 |
+
rapidfuzz==3.12.2
|
| 43 |
+
pandas
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Setup
|
| 47 |
+
|
| 48 |
+
1. Make sure you have all the required packages installed:
|
| 49 |
+
```
|
| 50 |
+
pip install -r requirements.txt
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
2. Set up your environment variables (optional):
|
| 54 |
+
```
|
| 55 |
+
export NEBIUS_API_KEY="your_api_key_here"
|
| 56 |
+
```
|
| 57 |
+
If not set, the script will use the default API key included in the code.
|
| 58 |
+
|
| 59 |
+
## Running the Evaluation
|
| 60 |
+
|
| 61 |
+
To evaluate the RAG pipeline using Ragas:
|
| 62 |
+
|
| 63 |
+
```bash
|
| 64 |
+
python ragas_eval.py
|
| 65 |
+
```
|
| 66 |
+
|
| 67 |
+
This will:
|
| 68 |
+
1. Load the Qdrant document store from the local directory
|
| 69 |
+
2. Load the test set from `testset.json`
|
| 70 |
+
3. Run the RAG pipeline on each test question
|
| 71 |
+
4. Evaluate the results using Ragas metrics
|
| 72 |
+
5. Save the evaluation results to `ragas_evaluation_results.json`
|
| 73 |
+
|
| 74 |
+
## Ragas Metrics
|
| 75 |
+
|
| 76 |
+
The evaluation uses the following Ragas metrics:
|
| 77 |
+
|
| 78 |
+
- **Faithfulness**: Measures if the generated answer is factually consistent with the retrieved contexts
|
| 79 |
+
- **Answer Relevancy**: Measures if the answer is relevant to the question
|
| 80 |
+
- **Context Precision**: Measures the proportion of retrieved contexts that are relevant
|
| 81 |
+
- **Context Recall**: Measures if the retrieved contexts contain the information needed to answer the question
|
| 82 |
+
- **Context Relevancy**: Measures the relevance of retrieved contexts to the question
|
| 83 |
+
|
| 84 |
+
## Customization
|
| 85 |
+
|
| 86 |
+
You can customize the evaluation by modifying the `RAGEvaluator` class parameters:
|
| 87 |
+
|
| 88 |
+
```python
|
| 89 |
+
evaluator = RAGEvaluator(
|
| 90 |
+
embedding_model_name="BAAI/bge-en-icl",
|
| 91 |
+
llm_model_name="meta-llama/Llama-3.3-70B-Instruct",
|
| 92 |
+
qdrant_path="./qdrant_data",
|
| 93 |
+
api_base_url="https://api.studio.nebius.com/v1/",
|
| 94 |
+
collection_name="ltu_programmes"
|
| 95 |
+
)
|
| 96 |
+
```
|
| 97 |
+
|
| 98 |
+
## Test Set Format
|
| 99 |
+
|
| 100 |
+
The test set is a JSONL file where each line contains:
|
| 101 |
+
- `user_input`: The question
|
| 102 |
+
- `reference`: The reference answer
|
| 103 |
+
- `reference_contexts`: List of reference contexts that should be retrieved
|
| 104 |
+
- `synthesizer_name`: Name of the synthesizer used to generate the reference answer
|
rag_pipeline.py
CHANGED
|
@@ -24,11 +24,11 @@ load_dotenv()
|
|
| 24 |
logging.basicConfig(level=logging.INFO)
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
-
logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
|
| 28 |
-
logging.getLogger("haystack").setLevel(logging.DEBUG)
|
| 29 |
|
| 30 |
-
tracing.tracer.is_content_tracing_enabled = True # to enable tracing/logging content (inputs/outputs)
|
| 31 |
-
tracing.enable_tracing(LoggingTracer(tags_color_strings={"haystack.component.input": "\x1b[1;31m", "haystack.component.name": "\x1b[1;34m"}))
|
| 32 |
|
| 33 |
class RAGPipeline:
|
| 34 |
def __init__(
|
|
@@ -207,15 +207,16 @@ class RAGPipeline:
|
|
| 207 |
"text_embedder": {"text": question},
|
| 208 |
# "bm25_retriever": {"query": question},
|
| 209 |
"prompt_builder": {"question": question}
|
| 210 |
-
})
|
| 211 |
|
| 212 |
# Extract answer and documents
|
| 213 |
answer = result["llm"]["replies"][0]
|
| 214 |
-
|
|
|
|
| 215 |
|
| 216 |
return {
|
| 217 |
"answer": answer,
|
| 218 |
-
"documents":
|
| 219 |
"question": question
|
| 220 |
}
|
| 221 |
except Exception as e:
|
|
|
|
| 24 |
logging.basicConfig(level=logging.INFO)
|
| 25 |
logger = logging.getLogger(__name__)
|
| 26 |
|
| 27 |
+
# logging.basicConfig(format="%(levelname)s - %(name)s - %(message)s", level=logging.WARNING)
|
| 28 |
+
# logging.getLogger("haystack").setLevel(logging.DEBUG)
|
| 29 |
|
| 30 |
+
# tracing.tracer.is_content_tracing_enabled = True # to enable tracing/logging content (inputs/outputs)
|
| 31 |
+
# tracing.enable_tracing(LoggingTracer(tags_color_strings={"haystack.component.input": "\x1b[1;31m", "haystack.component.name": "\x1b[1;34m"}))
|
| 32 |
|
| 33 |
class RAGPipeline:
|
| 34 |
def __init__(
|
|
|
|
| 207 |
"text_embedder": {"text": question},
|
| 208 |
# "bm25_retriever": {"query": question},
|
| 209 |
"prompt_builder": {"question": question}
|
| 210 |
+
}, {'embedding_retriever'})
|
| 211 |
|
| 212 |
# Extract answer and documents
|
| 213 |
answer = result["llm"]["replies"][0]
|
| 214 |
+
print(result.keys())
|
| 215 |
+
documents = result["embedding_retriever"]["documents"]
|
| 216 |
|
| 217 |
return {
|
| 218 |
"answer": answer,
|
| 219 |
+
"documents": documents, #documents,
|
| 220 |
"question": question
|
| 221 |
}
|
| 222 |
except Exception as e:
|
ragas_eval.py
ADDED
|
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import json
|
| 3 |
+
import logging
|
| 4 |
+
from typing import List, Dict, Any
|
| 5 |
+
|
| 6 |
+
# Haystack imports
|
| 7 |
+
from haystack.utils import Secret
|
| 8 |
+
from haystack.components.generators.openai import OpenAIGenerator
|
| 9 |
+
from haystack.components.embedders import OpenAITextEmbedder
|
| 10 |
+
from ragas import EvaluationDataset, SingleTurnSample
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
# Ragas imports
|
| 14 |
+
from ragas.metrics import (
|
| 15 |
+
faithfulness,
|
| 16 |
+
answer_relevancy,
|
| 17 |
+
context_precision,
|
| 18 |
+
context_recall,
|
| 19 |
+
# context_relevancy
|
| 20 |
+
)
|
| 21 |
+
from ragas.llms.haystack_wrapper import HaystackLLMWrapper
|
| 22 |
+
from ragas.embeddings.haystack_wrapper import HaystackEmbeddingsWrapper
|
| 23 |
+
from ragas import evaluate
|
| 24 |
+
import pandas as pd
|
| 25 |
+
|
| 26 |
+
# Import the existing RAG pipeline
|
| 27 |
+
from rag_pipeline import RAGPipeline
|
| 28 |
+
|
| 29 |
+
# Configure logging
|
| 30 |
+
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(name)s - %(levelname)s - %(message)s")
|
| 31 |
+
logger = logging.getLogger(__name__)
|
| 32 |
+
|
| 33 |
+
class RAGEvaluator:
|
| 34 |
+
def __init__(
|
| 35 |
+
self,
|
| 36 |
+
embedding_model_name: str = "BAAI/bge-en-icl",
|
| 37 |
+
llm_model_name: str = "meta-llama/Llama-3.3-70B-Instruct",
|
| 38 |
+
qdrant_path: str = "./qdrant_data",
|
| 39 |
+
api_base_url: str = "https://api.studio.nebius.com/v1/",
|
| 40 |
+
collection_name: str = "ltu_documents"
|
| 41 |
+
):
|
| 42 |
+
self.embedding_model_name = embedding_model_name
|
| 43 |
+
self.llm_model_name = llm_model_name
|
| 44 |
+
self.qdrant_path = qdrant_path
|
| 45 |
+
self.api_base_url = api_base_url
|
| 46 |
+
self.collection_name = collection_name
|
| 47 |
+
|
| 48 |
+
# Load API key from environment or use the one from testset_generation.py
|
| 49 |
+
self.api_key = Secret.from_token(os.getenv("NEBIUS_API_KEY"))
|
| 50 |
+
|
| 51 |
+
# Initialize the existing RAG pipeline
|
| 52 |
+
self.init_components()
|
| 53 |
+
|
| 54 |
+
def init_components(self):
|
| 55 |
+
"""Initialize the existing RAG pipeline and Ragas components"""
|
| 56 |
+
logger.info("Initializing components...")
|
| 57 |
+
|
| 58 |
+
# Initialize the existing RAG pipeline
|
| 59 |
+
self.rag_pipeline = RAGPipeline(
|
| 60 |
+
embedding_model_name=self.embedding_model_name,
|
| 61 |
+
llm_model_name=self.llm_model_name,
|
| 62 |
+
qdrant_path=self.qdrant_path
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
# Initialize Ragas wrappers
|
| 66 |
+
self.llm_wrapper = HaystackLLMWrapper(
|
| 67 |
+
OpenAIGenerator(
|
| 68 |
+
api_base_url="https://api.studio.nebius.com/v1/",
|
| 69 |
+
model=self.llm_model_name,
|
| 70 |
+
api_key=self.api_key,
|
| 71 |
+
generation_kwargs={
|
| 72 |
+
"max_tokens": 1024,
|
| 73 |
+
"temperature": 0.1,
|
| 74 |
+
"top_p": 0.95,
|
| 75 |
+
}
|
| 76 |
+
)
|
| 77 |
+
)
|
| 78 |
+
|
| 79 |
+
self.embedding_wrapper = HaystackEmbeddingsWrapper(
|
| 80 |
+
OpenAITextEmbedder(
|
| 81 |
+
api_base_url="https://api.studio.nebius.com/v1/",
|
| 82 |
+
model=self.embedding_model_name,
|
| 83 |
+
api_key=self.api_key,
|
| 84 |
+
)
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
logger.info("Components initialized successfully")
|
| 88 |
+
|
| 89 |
+
def load_testset(self, testset_path: str) -> List[Dict[str, Any]]:
|
| 90 |
+
"""Load test set from a JSONL file"""
|
| 91 |
+
logger.info(f"Loading test set from {testset_path}...")
|
| 92 |
+
|
| 93 |
+
test_data = []
|
| 94 |
+
with open(testset_path, 'r', encoding='utf-8') as f:
|
| 95 |
+
for line in f:
|
| 96 |
+
test_data.append(json.loads(line))
|
| 97 |
+
|
| 98 |
+
logger.info(f"Loaded {len(test_data)} test samples")
|
| 99 |
+
return test_data
|
| 100 |
+
|
| 101 |
+
def prepare_ragas_dataframe(self, test_data: List[Dict[str, Any]], results: List[Dict[str, Any]]) -> pd.DataFrame:
|
| 102 |
+
"""Prepare dataframe for Ragas evaluation"""
|
| 103 |
+
logger.info("Preparing data for Ragas evaluation...")
|
| 104 |
+
|
| 105 |
+
eval_data = []
|
| 106 |
+
|
| 107 |
+
for _, (test_sample, result) in enumerate(zip(test_data, results)):
|
| 108 |
+
question = test_sample["user_input"]
|
| 109 |
+
reference_answer = test_sample["reference"]
|
| 110 |
+
|
| 111 |
+
# Get generated answer and contexts from pipeline result
|
| 112 |
+
generated_answer = result["answer"]
|
| 113 |
+
contexts = [doc.content for doc in result["documents"]]
|
| 114 |
+
|
| 115 |
+
# Get reference contexts
|
| 116 |
+
reference_contexts = test_sample.get("reference_contexts", [])
|
| 117 |
+
|
| 118 |
+
eval_data.append(SingleTurnSample(
|
| 119 |
+
user_input=question,
|
| 120 |
+
response=generated_answer,
|
| 121 |
+
retrieved_contexts=contexts,
|
| 122 |
+
reference=reference_answer,
|
| 123 |
+
reference_contexts=reference_contexts
|
| 124 |
+
))
|
| 125 |
+
# print(eval_data[0])
|
| 126 |
+
|
| 127 |
+
return EvaluationDataset(eval_data)
|
| 128 |
+
|
| 129 |
+
def run_evaluation(self, testset_path: str = "testset.jsonl") -> Dict[str, float]:
|
| 130 |
+
"""Run the full evaluation process"""
|
| 131 |
+
logger.info("Starting RAG pipeline evaluation...")
|
| 132 |
+
|
| 133 |
+
# Load test set
|
| 134 |
+
test_data = self.load_testset(testset_path)
|
| 135 |
+
|
| 136 |
+
# Run pipeline for each test sample
|
| 137 |
+
results = []
|
| 138 |
+
for i, test_sample in enumerate(test_data):
|
| 139 |
+
logger.info(f"Processing test sample {i+1}/{len(test_data)}")
|
| 140 |
+
question = test_sample["user_input"]
|
| 141 |
+
|
| 142 |
+
# Run the existing RAG pipeline
|
| 143 |
+
result = self.rag_pipeline.query(question)
|
| 144 |
+
results.append(result)
|
| 145 |
+
|
| 146 |
+
# Prepare data for Ragas
|
| 147 |
+
eval_ds = self.prepare_ragas_dataframe(test_data, results)
|
| 148 |
+
|
| 149 |
+
# Run Ragas evaluation
|
| 150 |
+
logger.info("Running Ragas evaluation...")
|
| 151 |
+
evaluation_result = evaluate(
|
| 152 |
+
eval_ds,
|
| 153 |
+
# metrics=[
|
| 154 |
+
# faithfulness,
|
| 155 |
+
# answer_relevancy,
|
| 156 |
+
# context_precision,
|
| 157 |
+
# context_recall,
|
| 158 |
+
# # context_relevancy
|
| 159 |
+
# ],
|
| 160 |
+
llm=self.llm_wrapper,
|
| 161 |
+
embeddings=self.embedding_wrapper,
|
| 162 |
+
# reference_answers=eval_df["reference_answer"].tolist(),
|
| 163 |
+
# reference_contexts=eval_df["reference_contexts"].tolist()
|
| 164 |
+
)
|
| 165 |
+
|
| 166 |
+
# Print and return results
|
| 167 |
+
logger.info("Evaluation complete!")
|
| 168 |
+
logger.info(f"Results: {evaluation_result}")
|
| 169 |
+
|
| 170 |
+
return evaluation_result
|
| 171 |
+
|
| 172 |
+
if __name__ == "__main__":
|
| 173 |
+
# Create and run evaluator
|
| 174 |
+
evaluator = RAGEvaluator()
|
| 175 |
+
results = evaluator.run_evaluation()
|
| 176 |
+
print(repr(results))
|
| 177 |
+
# Save results to file
|
| 178 |
+
# with open("ragas_evaluation_results.json", "w") as f:
|
| 179 |
+
# json.dump(results.to_dict(), f, indent=2)
|
| 180 |
+
|
| 181 |
+
# print("\nEvaluation results saved to ragas_evaluation_results.json")
|
| 182 |
+
# INFO:__main__:Results: {
|
| 183 |
+
# 'answer_relevancy': 0.8558,
|
| 184 |
+
# 'context_precision': 0.9033,
|
| 185 |
+
# 'faithfulness': 0.8000,
|
| 186 |
+
# 'context_recall': 0.9417
|
| 187 |
+
# }
|
| 188 |
+
# {'answer_relevancy': 0.8558, 'context_precision': 0.9033, 'faithfulness': 0.8000, 'context_recall': 0.9417}
|
ragas_evaluation_results.json
ADDED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ python-dotenv==1.0.1
|
|
| 5 |
beautifulsoup4==4.13.3
|
| 6 |
qdrant-haystack==8.0.0
|
| 7 |
ragas-haystack==2.1.0
|
| 8 |
-
rapidfuzz==3.12.2
|
|
|
|
|
|
| 5 |
beautifulsoup4==4.13.3
|
| 6 |
qdrant-haystack==8.0.0
|
| 7 |
ragas-haystack==2.1.0
|
| 8 |
+
rapidfuzz==3.12.2
|
| 9 |
+
pandas==2.2.2
|
testset.json → testset.jsonl
RENAMED
|
File without changes
|
testset_generation.py
CHANGED
|
@@ -4,9 +4,12 @@ from haystack.components.generators.openai import OpenAIGenerator
|
|
| 4 |
from haystack.components.embedders import OpenAITextEmbedder
|
| 5 |
from haystack.utils import Secret
|
| 6 |
import json
|
|
|
|
|
|
|
| 7 |
|
|
|
|
|
|
|
| 8 |
|
| 9 |
-
api_key = Secret.from_token("eyJhbGciOiJIUzI1NiIsImtpZCI6IlV6SXJWd1h0dnprLVRvdzlLZWstc0M1akptWXBvX1VaVkxUZlpnMDRlOFUiLCJ0eXAiOiJKV1QifQ.eyJzdWIiOiJnaXRodWJ8MzM4NTU5OCIsInNjb3BlIjoib3BlbmlkIG9mZmxpbmVfYWNjZXNzIiwiaXNzIjoiYXBpX2tleV9pc3N1ZXIiLCJhdWQiOlsiaHR0cHM6Ly9uZWJpdXMtaW5mZXJlbmNlLmV1LmF1dGgwLmNvbS9hcGkvdjIvIl0sImV4cCI6MTg5ODY1NzA4NSwidXVpZCI6IjkwYWY2MmQ5LTQ1M2ItNDZjNi05N2ZkLTg3ZTQ2YWEzMTg0NyIsIm5hbWUiOiJsdHUtdGhlc2lzICIsImV4cGlyZXNfYXQiOiIyMDMwLTAzLTAyVDA0OjQ0OjQ1KzAwMDAifQ.f31st8MhisxGfLxXeLEsSPGIoCKGy1Py3_-qn2Cw2Tw")
|
| 10 |
llm = HaystackLLMWrapper(OpenAIGenerator(
|
| 11 |
api_base_url="https://api.studio.nebius.com/v1/",
|
| 12 |
model="meta-llama/Llama-3.3-70B-Instruct",
|
|
@@ -36,6 +39,6 @@ if not lcdocs:
|
|
| 36 |
generator = TestsetGenerator(llm=llm, embedding_model=embedding)
|
| 37 |
dataset = generator.generate_with_langchain_docs(lcdocs, testset_size=10)
|
| 38 |
# Save the generated test samples to a JSON file
|
| 39 |
-
dataset.to_jsonl("testset.
|
| 40 |
|
| 41 |
-
print(f"Saved {len(dataset)} test samples to testset.
|
|
|
|
| 4 |
from haystack.components.embedders import OpenAITextEmbedder
|
| 5 |
from haystack.utils import Secret
|
| 6 |
import json
|
| 7 |
+
import os
|
| 8 |
+
from dotenv import load_dotenv
|
| 9 |
|
| 10 |
+
load_dotenv() # This loads variables from .env into the environment
|
| 11 |
+
api_key = Secret.from_token(os.getenv("NEBIUS_API_KEY"))
|
| 12 |
|
|
|
|
| 13 |
llm = HaystackLLMWrapper(OpenAIGenerator(
|
| 14 |
api_base_url="https://api.studio.nebius.com/v1/",
|
| 15 |
model="meta-llama/Llama-3.3-70B-Instruct",
|
|
|
|
| 39 |
generator = TestsetGenerator(llm=llm, embedding_model=embedding)
|
| 40 |
dataset = generator.generate_with_langchain_docs(lcdocs, testset_size=10)
|
| 41 |
# Save the generated test samples to a JSON file
|
| 42 |
+
dataset.to_jsonl("testset.jsonl")
|
| 43 |
|
| 44 |
+
print(f"Saved {len(dataset)} test samples to testset.jsonl")
|