Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from flask import Flask, request, jsonify
|
| 3 |
+
from pydantic import BaseModel
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import joblib
|
| 7 |
+
import re
|
| 8 |
+
import string
|
| 9 |
+
import io
|
| 10 |
+
import uvicorn
|
| 11 |
+
from threading import Thread
|
| 12 |
+
|
| 13 |
+
# Initialize Flask & FastAPI
|
| 14 |
+
app = Flask(__name__)
|
| 15 |
+
api = FastAPI()
|
| 16 |
+
|
| 17 |
+
# β
Load NSFW Image Classification Model
|
| 18 |
+
pipe = pipeline("image-classification", model="LukeJacob2023/nsfw-image-detector")
|
| 19 |
+
|
| 20 |
+
# β
Load Toxic Text Classification Model
|
| 21 |
+
try:
|
| 22 |
+
model = joblib.load("toxic_classifier.pkl")
|
| 23 |
+
vectorizer = joblib.load("vectorizer.pkl")
|
| 24 |
+
print("β
Model & Vectorizer Loaded Successfully!")
|
| 25 |
+
except Exception as e:
|
| 26 |
+
print(f"β Error: {e}")
|
| 27 |
+
exit(1)
|
| 28 |
+
|
| 29 |
+
# π Text Input Data Model
|
| 30 |
+
class TextInput(BaseModel):
|
| 31 |
+
text: str
|
| 32 |
+
|
| 33 |
+
# πΉ Text Preprocessing Function
|
| 34 |
+
def preprocess_text(text):
|
| 35 |
+
text = text.lower()
|
| 36 |
+
text = re.sub(r'\d+', '', text) # Remove numbers
|
| 37 |
+
text = text.translate(str.maketrans('', '', string.punctuation)) # Remove punctuation
|
| 38 |
+
return text.strip()
|
| 39 |
+
|
| 40 |
+
# π NSFW Image Classification API (Flask)
|
| 41 |
+
@app.route('/classify_image', methods=['POST'])
|
| 42 |
+
def classify_image():
|
| 43 |
+
if 'file' not in request.files:
|
| 44 |
+
return jsonify({"error": "No file uploaded"}), 400
|
| 45 |
+
|
| 46 |
+
file = request.files['file']
|
| 47 |
+
image = Image.open(io.BytesIO(file.read()))
|
| 48 |
+
results = pipe(image)
|
| 49 |
+
|
| 50 |
+
classification_label = max(results, key=lambda x: x['score'])['label']
|
| 51 |
+
nsfw_labels = {"sexy", "porn", "hentai"}
|
| 52 |
+
nsfw_status = "NSFW" if classification_label in nsfw_labels else "SFW"
|
| 53 |
+
|
| 54 |
+
return jsonify({"status": nsfw_status, "results": results})
|
| 55 |
+
|
| 56 |
+
# π Toxic Text Classification API (FastAPI)
|
| 57 |
+
@api.post("/classify_text/")
|
| 58 |
+
async def classify_text(data: TextInput):
|
| 59 |
+
try:
|
| 60 |
+
processed_text = preprocess_text(data.text)
|
| 61 |
+
text_vectorized = vectorizer.transform([processed_text])
|
| 62 |
+
prediction = model.predict(text_vectorized)
|
| 63 |
+
result = "Toxic" if prediction[0] == 1 else "Safe"
|
| 64 |
+
return {"prediction": result}
|
| 65 |
+
except Exception as e:
|
| 66 |
+
return {"error": str(e)}
|
| 67 |
+
|
| 68 |
+
# π₯ Run both servers using Gunicorn
|
| 69 |
+
def run_flask():
|
| 70 |
+
app.run(host="0.0.0.0", port=5000)
|
| 71 |
+
|
| 72 |
+
def run_fastapi():
|
| 73 |
+
uvicorn.run(api, host="0.0.0.0", port=8000)
|
| 74 |
+
|
| 75 |
+
if __name__ == "__main__":
|
| 76 |
+
Thread(target=run_flask).start()
|
| 77 |
+
Thread(target=run_fastapi).start()
|
| 78 |
+
|