| from transformers import AutoModelForCausalLM, AutoTokenizer | |
| import time | |
| import datetime | |
| import streamlit as streamlit | |
| question = "Name the planets in the solar system? A: " | |
| question = "Quais são os planetas do sistema solar?" | |
| question = "Qual é o maior planeta do sistema solar?" | |
| before = datetime.datetime.now() | |
| # Use a pipeline as a high-level helper | |
| from transformers import pipeline | |
| messages = [ | |
| {"role": "user", "content": question}, | |
| ] | |
| print('gerando a saida...') | |
| pipe = pipeline("text-generation", model="01-ai/Yi-1.5-34B-Chat") | |
| output = pipe(messages) | |
| st.write(output) | |
| # print('tokenizando...') | |
| # tokenizer = AutoTokenizer.from_pretrained(model_path, use_fast=False) | |
| # print('tokenizado.') | |
| # print('carregando o modelo...') | |
| # # Since transformers 4.35.0, the GPT-Q/AWQ model can be loaded using AutoModelForCausalLM. | |
| # model = AutoModelForCausalLM.from_pretrained( | |
| # model_path, | |
| # device_map="auto", | |
| # torch_dtype='auto' | |
| # ).eval() | |
| # print('modelo carreegado.') | |
| # # Prompt content: "hi" | |
| # messages = [ | |
| # {"role": "user", "content": question} | |
| # ] | |
| # print('tokenizando o prompt...') | |
| # input_ids = tokenizer.apply_chat_template(conversation=messages, tokenize=True, return_tensors='pt') | |
| # print('prompt tokenizado.') | |
| # print('gerando a saida...') | |
| # output_ids = model.generate(input_ids, eos_token_id=tokenizer.eos_token_id, | |
| # max_new_tokens=10) #10 # 45 | |
| # # max_new_tokens=22) | |
| print('saida gerada.') | |
| # print('Decodificando a saida...') | |
| # response = tokenizer.decode(output_ids[0][input_ids.shape[1]:], skip_special_tokens=True) | |
| # print('saida decodificada.') | |
| # Model response: "Hello! How can I assist you today?" | |
| # print(response) | |
| # question = output['choices'][0]['text'].split('A:')[0] | |
| # answer = output['choices'][0]['text'].split('A:')[1] | |
| # answer = 'A: ' + answer | |
| print('\n\n') | |
| print(question) | |
| print(response) | |
| after = datetime.datetime.now() | |
| current_time = (after - before) # .strftime("%H:%M:%S") | |
| print("\nTime Elapsed: ", current_time) | |