dfsfd
Browse files- app.py +33 -13
- requirements.txt +3 -6
app.py
CHANGED
|
@@ -19,23 +19,43 @@ before = datetime.datetime.now()
|
|
| 19 |
# tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-1.5-6B-Chat")
|
| 20 |
# model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-1.5-6B-Chat")
|
| 21 |
|
| 22 |
-
|
| 23 |
-
import
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
|
| 28 |
-
|
| 29 |
-
inputs = tokenizer(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
-
st.write('gerando a saida...')
|
| 32 |
-
outputs = model(inputs)
|
| 33 |
|
| 34 |
-
last_hidden_states = outputs.last_hidden_state
|
| 35 |
|
| 36 |
-
output = last_hidden_states
|
| 37 |
|
| 38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
|
| 40 |
|
| 41 |
# st.write('tokenizando...')
|
|
@@ -118,8 +138,8 @@ print('saida gerada.')
|
|
| 118 |
# answer = 'A: ' + answer
|
| 119 |
|
| 120 |
print('\n\n')
|
| 121 |
-
print(question)
|
| 122 |
-
print(response)
|
| 123 |
|
| 124 |
after = datetime.datetime.now()
|
| 125 |
|
|
|
|
| 19 |
# tokenizer = AutoTokenizer.from_pretrained("01-ai/Yi-1.5-6B-Chat")
|
| 20 |
# model = AutoModelForCausalLM.from_pretrained("01-ai/Yi-1.5-6B-Chat")
|
| 21 |
|
| 22 |
+
# Load model directly
|
| 23 |
+
from transformers import AutoTokenizer, Phi3ForCausalLM
|
| 24 |
|
| 25 |
+
model = Phi3ForCausalLM.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
| 26 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/phi-3-mini-4k-instruct")
|
| 27 |
|
| 28 |
+
prompt = "Qual é o maior planeta do sistema solar ?"
|
| 29 |
+
inputs = tokenizer(prompt, return_tensors="pt")
|
| 30 |
+
|
| 31 |
+
# Generate
|
| 32 |
+
generate_ids = model.generate(inputs.input_ids, max_length=30)
|
| 33 |
+
output = tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
| 34 |
+
|
| 35 |
+
st.write(output)
|
| 36 |
|
|
|
|
|
|
|
| 37 |
|
|
|
|
| 38 |
|
|
|
|
| 39 |
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
|
| 45 |
+
# tokenizer = AutoTokenizer.from_pretrained("FacebookAI/roberta-base")
|
| 46 |
+
# model = TFRobertaModel.from_pretrained("FacebookAI/roberta-base")
|
| 47 |
+
|
| 48 |
+
# st.write('tokenizando...')
|
| 49 |
+
# inputs = tokenizer(question, return_tensors="tf")
|
| 50 |
+
|
| 51 |
+
# st.write('gerando a saida...')
|
| 52 |
+
# outputs = model(inputs)
|
| 53 |
+
|
| 54 |
+
# last_hidden_states = outputs.last_hidden_state
|
| 55 |
+
|
| 56 |
+
# output = last_hidden_states
|
| 57 |
+
|
| 58 |
+
# st.write(output)
|
| 59 |
|
| 60 |
|
| 61 |
# st.write('tokenizando...')
|
|
|
|
| 138 |
# answer = 'A: ' + answer
|
| 139 |
|
| 140 |
print('\n\n')
|
| 141 |
+
# print(question)
|
| 142 |
+
# print(response)
|
| 143 |
|
| 144 |
after = datetime.datetime.now()
|
| 145 |
|
requirements.txt
CHANGED
|
@@ -1,8 +1,5 @@
|
|
| 1 |
-
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
transformers==4.44.0
|
| 5 |
-
optimum
|
| 6 |
-
auto_gptq==0.5.0
|
| 7 |
|
| 8 |
|
|
|
|
| 1 |
+
torch
|
| 2 |
+
streamlit
|
| 3 |
+
transformers
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
|