Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,28 +1,16 @@
|
|
| 1 |
import os
|
| 2 |
import gc
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
import numpy as np
|
| 5 |
from PIL import Image
|
| 6 |
import imageio
|
| 7 |
import gradio as gr
|
| 8 |
-
from
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
from nodes import (
|
| 13 |
-
CheckpointLoaderSimple,
|
| 14 |
-
CLIPLoader,
|
| 15 |
-
CLIPTextEncode,
|
| 16 |
-
VAELoader,
|
| 17 |
-
VAEDecode,
|
| 18 |
-
KSampler,
|
| 19 |
-
)
|
| 20 |
-
from custom_nodes.ComfyUI_GGUF.nodes import UnetLoaderGGUF
|
| 21 |
-
from comfy_extras.nodes_hunyuan import EmptyHunyuanLatentVideo
|
| 22 |
-
from comfy_extras.nodes_images import SaveAnimatedWEBP
|
| 23 |
-
from comfy_extras.nodes_video import SaveWEBM
|
| 24 |
-
|
| 25 |
-
# Globals
|
| 26 |
unet_loader = None
|
| 27 |
clip_loader = None
|
| 28 |
clip_encode_positive = None
|
|
@@ -31,21 +19,114 @@ vae_loader = None
|
|
| 31 |
empty_latent_video = None
|
| 32 |
ksampler = None
|
| 33 |
vae_decode = None
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 46 |
def imports_initialization():
|
| 47 |
global unet_loader, clip_loader, clip_encode_positive, clip_encode_negative
|
| 48 |
-
global vae_loader, empty_latent_video, ksampler, vae_decode
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
unet_loader = UnetLoaderGGUF()
|
| 51 |
clip_loader = CLIPLoader()
|
|
@@ -55,172 +136,87 @@ def imports_initialization():
|
|
| 55 |
empty_latent_video = EmptyHunyuanLatentVideo()
|
| 56 |
ksampler = KSampler()
|
| 57 |
vae_decode = VAEDecode()
|
|
|
|
|
|
|
| 58 |
|
| 59 |
-
return "
|
| 60 |
|
| 61 |
-
|
| 62 |
-
#
|
|
|
|
| 63 |
def clear_memory():
|
| 64 |
gc.collect()
|
| 65 |
if torch.cuda.is_available():
|
| 66 |
torch.cuda.empty_cache()
|
| 67 |
torch.cuda.ipc_collect()
|
| 68 |
for obj in list(globals().values()):
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
del obj
|
| 72 |
-
except:
|
| 73 |
-
pass
|
| 74 |
gc.collect()
|
| 75 |
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
):
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
"
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
# 2c. Setup latent video
|
| 141 |
-
latent = empty_latent_video.generate(width, height, frames, 1)[0]
|
| 142 |
-
|
| 143 |
-
# 2d. Sample using UNet
|
| 144 |
-
model = unet_loader.load_unet(unet_file)[0]
|
| 145 |
-
log.append("🎥 Sampling latents...")
|
| 146 |
-
sampled = ksampler.sample(
|
| 147 |
-
model=model,
|
| 148 |
-
seed=seed,
|
| 149 |
-
steps=steps,
|
| 150 |
-
cfg=cfg_scale,
|
| 151 |
-
sampler_name=sampler_name,
|
| 152 |
-
scheduler=scheduler,
|
| 153 |
-
positive=pos,
|
| 154 |
-
negative=neg,
|
| 155 |
-
latent_image=latent
|
| 156 |
-
)[0]
|
| 157 |
-
del model
|
| 158 |
-
clear_memory()
|
| 159 |
-
|
| 160 |
-
# 2e. Decode via VAE
|
| 161 |
-
log.append("🔓 Decoding with VAE...")
|
| 162 |
-
vae_model = vae_loader.load_vae(vae_file)[0]
|
| 163 |
-
decoded = vae_decode.decode(vae_model, sampled)[0]
|
| 164 |
-
del vae_model
|
| 165 |
-
clear_memory()
|
| 166 |
-
|
| 167 |
-
# 2f. Save output
|
| 168 |
-
filename = "hf_gen"
|
| 169 |
-
if frames == 1:
|
| 170 |
-
log.append("💾 Saving single frame...")
|
| 171 |
-
out = save_as_image(decoded[0], filename)
|
| 172 |
-
else:
|
| 173 |
-
if output_format == "webm":
|
| 174 |
-
log.append("💾 Saving as WEBM...")
|
| 175 |
-
out = save_as_webm(decoded, filename, fps)
|
| 176 |
-
else:
|
| 177 |
-
log.append("💾 Saving as MP4...")
|
| 178 |
-
out = save_as_mp4(decoded, filename, fps)
|
| 179 |
-
|
| 180 |
-
log.append(f"✅ Saved: {out}")
|
| 181 |
-
clear_memory()
|
| 182 |
-
return "\n".join(log), out
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
# 3️⃣ Gradio UI
|
| 186 |
-
|
| 187 |
-
app = gr.Blocks()
|
| 188 |
-
with app:
|
| 189 |
-
gr.Markdown("# ComfyUI Text‑to‑Video on Hugging Face Spaces")
|
| 190 |
-
|
| 191 |
-
with gr.Tab("Initialize"):
|
| 192 |
-
init_btn = gr.Button("Initialize Models")
|
| 193 |
-
init_out = gr.Textbox(lines=3, interactive=False, label="Status")
|
| 194 |
-
init_btn.click(imports_initialization, None, init_out)
|
| 195 |
-
|
| 196 |
-
with gr.Tab("Generate"):
|
| 197 |
-
with gr.Row():
|
| 198 |
-
pos = gr.Textbox(label="Positive Prompt", value="lion")
|
| 199 |
-
neg = gr.Textbox(label="Negative Prompt", value="")
|
| 200 |
-
with gr.Row():
|
| 201 |
-
w = gr.Slider(64, 1024, step=8, value=400, label="Width")
|
| 202 |
-
h = gr.Slider(64, 1024, step=8, value=400, label="Height")
|
| 203 |
-
with gr.Row():
|
| 204 |
-
se = gr.Number(label="Seed", value=0)
|
| 205 |
-
st = gr.Slider(1, 100, value=10, label="Steps")
|
| 206 |
-
cf = gr.Slider(1, 20, step=0.1, value=3, label="CFG Scale")
|
| 207 |
-
with gr.Row():
|
| 208 |
-
samp = gr.Dropdown(["uni_pc", "euler", "dpmpp_2m", "ddim", "lms"], value="uni_pc", label="Sampler")
|
| 209 |
-
sched = gr.Dropdown(["simple", "normal", "karras", "exponential"], value="normal", label="Scheduler")
|
| 210 |
-
with gr.Row():
|
| 211 |
-
fr = gr.Slider(1, 60, value=2, label="Frames")
|
| 212 |
-
fps = gr.Slider(1, 60, value=10, label="FPS")
|
| 213 |
-
fmt = gr.Radio(["mp4", "webm"], value="webm", label="Output Format")
|
| 214 |
-
q6 = gr.Checkbox(label="Use Q6 UNet model", value=False)
|
| 215 |
-
gen_btn = gr.Button("Generate")
|
| 216 |
-
gen_log = gr.Textbox(lines=10, interactive=False, label="Log")
|
| 217 |
-
gen_out = gr.Video(label="Output Video/Image")
|
| 218 |
-
|
| 219 |
-
gen_btn.click(
|
| 220 |
-
fn=generate_video,
|
| 221 |
-
inputs=[pos, neg, w, h, se, st, cf, samp, sched, fr, fps, fmt, q6],
|
| 222 |
-
outputs=[gen_log, gen_out]
|
| 223 |
-
)
|
| 224 |
|
| 225 |
if __name__ == "__main__":
|
| 226 |
-
|
|
|
|
| 1 |
import os
|
| 2 |
import gc
|
| 3 |
+
import sys
|
| 4 |
+
import subprocess
|
| 5 |
import torch
|
| 6 |
import numpy as np
|
| 7 |
from PIL import Image
|
| 8 |
import imageio
|
| 9 |
import gradio as gr
|
| 10 |
+
from base64 import b64encode
|
| 11 |
+
import requests
|
| 12 |
+
|
| 13 |
+
# Globals for model loaders and flags
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
unet_loader = None
|
| 15 |
clip_loader = None
|
| 16 |
clip_encode_positive = None
|
|
|
|
| 19 |
empty_latent_video = None
|
| 20 |
ksampler = None
|
| 21 |
vae_decode = None
|
| 22 |
+
save_webp = None
|
| 23 |
+
save_webm = None
|
| 24 |
+
useQ6 = False
|
| 25 |
+
|
| 26 |
+
# -------- Helper function to download a file using requests --------
|
| 27 |
+
def download_file(url, dest_path):
|
| 28 |
+
os.makedirs(os.path.dirname(dest_path), exist_ok=True)
|
| 29 |
+
if os.path.exists(dest_path):
|
| 30 |
+
return f"File already exists: {dest_path}"
|
| 31 |
+
with requests.get(url, stream=True) as r:
|
| 32 |
+
r.raise_for_status()
|
| 33 |
+
with open(dest_path, 'wb') as f:
|
| 34 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 35 |
+
f.write(chunk)
|
| 36 |
+
return f"Downloaded {url} to {dest_path}"
|
| 37 |
+
|
| 38 |
+
# -------------------------
|
| 39 |
+
# 1. Environment Setup (without aria2c)
|
| 40 |
+
# -------------------------
|
| 41 |
+
def environment_setup(use_q6: bool):
|
| 42 |
+
global useQ6
|
| 43 |
+
useQ6 = use_q6
|
| 44 |
+
output = []
|
| 45 |
+
|
| 46 |
+
# Install Python packages
|
| 47 |
+
setup_cmds = [
|
| 48 |
+
"pip install torch==2.6.0 torchvision==0.21.0 -q",
|
| 49 |
+
"pip install torchsde einops diffusers accelerate xformers==0.0.29.post2 -q",
|
| 50 |
+
"pip install av -q",
|
| 51 |
+
"pip install gradio==5.38.0 imageio numpy Pillow requests -q"
|
| 52 |
+
]
|
| 53 |
+
for cmd in setup_cmds:
|
| 54 |
+
output.append(f"Running: {cmd}")
|
| 55 |
+
proc = subprocess.run(cmd, shell=True, capture_output=True, text=True)
|
| 56 |
+
output.append(proc.stdout)
|
| 57 |
+
output.append(proc.stderr)
|
| 58 |
+
|
| 59 |
+
# Clone ComfyUI if missing
|
| 60 |
+
if not os.path.isdir("/content/ComfyUI"):
|
| 61 |
+
output.append("Cloning ComfyUI repo...")
|
| 62 |
+
proc = subprocess.run("git clone https://github.com/Isi-dev/ComfyUI /content/ComfyUI", shell=True, capture_output=True, text=True)
|
| 63 |
+
output.append(proc.stdout + proc.stderr)
|
| 64 |
+
else:
|
| 65 |
+
output.append("ComfyUI repo already exists")
|
| 66 |
+
|
| 67 |
+
# Clone custom nodes repo
|
| 68 |
+
if not os.path.isdir("/content/ComfyUI/custom_nodes/ComfyUI_GGUF"):
|
| 69 |
+
output.append("Cloning ComfyUI_GGUF repo...")
|
| 70 |
+
proc = subprocess.run("cd /content/ComfyUI/custom_nodes && git clone https://github.com/Isi-dev/ComfyUI_GGUF.git", shell=True, capture_output=True, text=True)
|
| 71 |
+
output.append(proc.stdout + proc.stderr)
|
| 72 |
+
# Install requirements for custom nodes
|
| 73 |
+
proc = subprocess.run("pip install -r /content/ComfyUI/custom_nodes/ComfyUI_GGUF/requirements.txt", shell=True, capture_output=True, text=True)
|
| 74 |
+
output.append(proc.stdout + proc.stderr)
|
| 75 |
+
else:
|
| 76 |
+
output.append("ComfyUI_GGUF repo already exists")
|
| 77 |
+
|
| 78 |
+
# Ensure model directories exist
|
| 79 |
+
model_unet_dir = "/content/ComfyUI/models/unet"
|
| 80 |
+
text_enc_dir = "/content/ComfyUI/models/text_encoders"
|
| 81 |
+
vae_dir = "/content/ComfyUI/models/vae"
|
| 82 |
+
os.makedirs(model_unet_dir, exist_ok=True)
|
| 83 |
+
os.makedirs(text_enc_dir, exist_ok=True)
|
| 84 |
+
os.makedirs(vae_dir, exist_ok=True)
|
| 85 |
+
|
| 86 |
+
# Download UNet model using requests fallback
|
| 87 |
+
if useQ6:
|
| 88 |
+
model_url = "https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/resolve/main/wan2.1-t2v-14b-Q6_K.gguf"
|
| 89 |
+
model_name = "wan2.1-t2v-14b-Q6_K.gguf"
|
| 90 |
+
else:
|
| 91 |
+
model_url = "https://huggingface.co/city96/Wan2.1-T2V-14B-gguf/resolve/main/wan2.1-t2v-14b-Q5_0.gguf"
|
| 92 |
+
model_name = "wan2.1-t2v-14b-Q5_0.gguf"
|
| 93 |
+
unet_path = os.path.join(model_unet_dir, model_name)
|
| 94 |
+
output.append(download_file(model_url, unet_path))
|
| 95 |
+
|
| 96 |
+
# Download text encoder and VAE
|
| 97 |
+
te_url = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/text_encoders/umt5_xxl_fp8_e4m3fn_scaled.safetensors"
|
| 98 |
+
vae_url = "https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/resolve/main/split_files/vae/wan_2.1_vae.safetensors"
|
| 99 |
+
te_path = os.path.join(text_enc_dir, "umt5_xxl_fp8_e4m3fn_scaled.safetensors")
|
| 100 |
+
vae_path = os.path.join(vae_dir, "wan_2.1_vae.safetensors")
|
| 101 |
+
output.append(download_file(te_url, te_path))
|
| 102 |
+
output.append(download_file(vae_url, vae_path))
|
| 103 |
+
|
| 104 |
+
return "\n".join(output)
|
| 105 |
+
|
| 106 |
+
# -------------------------
|
| 107 |
+
# 2. Imports & Initialization
|
| 108 |
+
# -------------------------
|
| 109 |
def imports_initialization():
|
| 110 |
global unet_loader, clip_loader, clip_encode_positive, clip_encode_negative
|
| 111 |
+
global vae_loader, empty_latent_video, ksampler, vae_decode, save_webp, save_webm
|
| 112 |
+
|
| 113 |
+
sys.path.insert(0, '/content/ComfyUI')
|
| 114 |
+
|
| 115 |
+
from comfy import model_management
|
| 116 |
+
from nodes import (
|
| 117 |
+
CheckpointLoaderSimple,
|
| 118 |
+
CLIPLoader,
|
| 119 |
+
CLIPTextEncode,
|
| 120 |
+
VAEDecode,
|
| 121 |
+
VAELoader,
|
| 122 |
+
KSampler,
|
| 123 |
+
UNETLoader
|
| 124 |
+
)
|
| 125 |
+
from custom_nodes.ComfyUI_GGUF.nodes import UnetLoaderGGUF
|
| 126 |
+
from comfy_extras.nodes_model_advanced import ModelSamplingSD3
|
| 127 |
+
from comfy_extras.nodes_hunyuan import EmptyHunyuanLatentVideo
|
| 128 |
+
from comfy_extras.nodes_images import SaveAnimatedWEBP
|
| 129 |
+
from comfy_extras.nodes_video import SaveWEBM
|
| 130 |
|
| 131 |
unet_loader = UnetLoaderGGUF()
|
| 132 |
clip_loader = CLIPLoader()
|
|
|
|
| 136 |
empty_latent_video = EmptyHunyuanLatentVideo()
|
| 137 |
ksampler = KSampler()
|
| 138 |
vae_decode = VAEDecode()
|
| 139 |
+
save_webp = SaveAnimatedWEBP()
|
| 140 |
+
save_webm = SaveWEBM()
|
| 141 |
|
| 142 |
+
return "Imports done and models initialized."
|
| 143 |
|
| 144 |
+
# -------------------------
|
| 145 |
+
# 3. Utility Functions
|
| 146 |
+
# -------------------------
|
| 147 |
def clear_memory():
|
| 148 |
gc.collect()
|
| 149 |
if torch.cuda.is_available():
|
| 150 |
torch.cuda.empty_cache()
|
| 151 |
torch.cuda.ipc_collect()
|
| 152 |
for obj in list(globals().values()):
|
| 153 |
+
if torch.is_tensor(obj) or (hasattr(obj, "data") and torch.is_tensor(obj.data)):
|
| 154 |
+
del obj
|
|
|
|
|
|
|
|
|
|
| 155 |
gc.collect()
|
| 156 |
|
| 157 |
+
def save_as_mp4(images, filename_prefix, fps, output_dir="/content/ComfyUI/output"):
|
| 158 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 159 |
+
output_path = f"{output_dir}/{filename_prefix}.mp4"
|
| 160 |
+
frames = [(img.cpu().numpy() * 255).astype(np.uint8) for img in images]
|
| 161 |
+
with imageio.get_writer(output_path, fps=fps) as writer:
|
| 162 |
+
for frame in frames:
|
| 163 |
+
writer.append_data(frame)
|
| 164 |
+
return output_path
|
| 165 |
+
|
| 166 |
+
def save_as_webp(images, filename_prefix, fps, quality=90, lossless=False, method=4, output_dir="/content/ComfyUI/output"):
|
| 167 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 168 |
+
output_path = f"{output_dir}/{filename_prefix}.webp"
|
| 169 |
+
frames = [(img.cpu().numpy() * 255).astype(np.uint8) for img in images]
|
| 170 |
+
kwargs = {'fps': int(fps), 'quality': int(quality), 'lossless': bool(lossless), 'method': int(method)}
|
| 171 |
+
with imageio.get_writer(output_path, format='WEBP', mode='I', **kwargs) as writer:
|
| 172 |
+
for frame in frames:
|
| 173 |
+
writer.append_data(frame)
|
| 174 |
+
return output_path
|
| 175 |
+
|
| 176 |
+
def save_as_webm(images, filename_prefix, fps, codec="vp9", quality=32, output_dir="/content/ComfyUI/output"):
|
| 177 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 178 |
+
output_path = f"{output_dir}/{filename_prefix}.webm"
|
| 179 |
+
frames = [(img.cpu().numpy() * 255).astype(np.uint8) for img in images]
|
| 180 |
+
kwargs = {'fps': int(fps), 'quality': int(quality), 'codec': str(codec), 'output_params': ['-crf', str(int(quality))]}
|
| 181 |
+
with imageio.get_writer(output_path, format='FFMPEG', mode='I', **kwargs) as writer:
|
| 182 |
+
for frame in frames:
|
| 183 |
+
writer.append_data(frame)
|
| 184 |
+
return output_path
|
| 185 |
+
|
| 186 |
+
def save_as_image(image, filename_prefix, output_dir="/content/ComfyUI/output"):
|
| 187 |
+
os.makedirs(output_dir, exist_ok=True)
|
| 188 |
+
output_path = f"{output_dir}/{filename_prefix}.png"
|
| 189 |
+
frame = (image.cpu().numpy() * 255).astype(np.uint8)
|
| 190 |
+
Image.fromarray(frame).save(output_path)
|
| 191 |
+
return output_path
|
| 192 |
+
|
| 193 |
+
def display_video_gradio(video_path):
|
| 194 |
+
# Return path for Gradio video component
|
| 195 |
+
return video_path
|
| 196 |
+
|
| 197 |
+
# -------------------------
|
| 198 |
+
# 4. Example Gradio interface setup (simplified)
|
| 199 |
+
# -------------------------
|
| 200 |
+
def dummy_inference(prompt):
|
| 201 |
+
# Placeholder for inference logic
|
| 202 |
+
return f"Prompt received: {prompt}"
|
| 203 |
+
|
| 204 |
+
def main():
|
| 205 |
+
with gr.Blocks() as demo:
|
| 206 |
+
gr.Markdown("# ComfyUI Integration Demo")
|
| 207 |
+
|
| 208 |
+
use_q6_checkbox = gr.Checkbox(label="Use Q6 Model", value=False)
|
| 209 |
+
setup_button = gr.Button("Setup Environment & Download Models")
|
| 210 |
+
setup_output = gr.Textbox(label="Setup Log", lines=15)
|
| 211 |
+
|
| 212 |
+
prompt_input = gr.Textbox(label="Prompt")
|
| 213 |
+
run_button = gr.Button("Run Inference")
|
| 214 |
+
result_output = gr.Textbox(label="Output")
|
| 215 |
+
|
| 216 |
+
setup_button.click(fn=environment_setup, inputs=[use_q6_checkbox], outputs=[setup_output])
|
| 217 |
+
run_button.click(fn=dummy_inference, inputs=[prompt_input], outputs=[result_output])
|
| 218 |
+
|
| 219 |
+
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
|
| 221 |
if __name__ == "__main__":
|
| 222 |
+
main()
|