Spaces:
Running
Running
| import math | |
| from typing import Any, Optional, Union | |
| import torch | |
| from torch import nn | |
| from torch.nn import Conv1d | |
| from torch.nn import functional as F | |
| from torch.nn.utils import remove_weight_norm, weight_norm | |
| from style_bert_vits2.models import commons | |
| from style_bert_vits2.models.attentions import Encoder | |
| from style_bert_vits2.models.transforms import piecewise_rational_quadratic_transform | |
| LRELU_SLOPE = 0.1 | |
| class LayerNorm(nn.Module): | |
| def __init__(self, channels: int, eps: float = 1e-5) -> None: | |
| super().__init__() | |
| self.channels = channels | |
| self.eps = eps | |
| self.gamma = nn.Parameter(torch.ones(channels)) | |
| self.beta = nn.Parameter(torch.zeros(channels)) | |
| def forward(self, x: torch.Tensor) -> torch.Tensor: | |
| x = x.transpose(1, -1) | |
| x = F.layer_norm(x, (self.channels,), self.gamma, self.beta, self.eps) | |
| return x.transpose(1, -1) | |
| class ConvReluNorm(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| hidden_channels: int, | |
| out_channels: int, | |
| kernel_size: int, | |
| n_layers: int, | |
| p_dropout: float, | |
| ) -> None: | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.hidden_channels = hidden_channels | |
| self.out_channels = out_channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.p_dropout = p_dropout | |
| assert n_layers > 1, "Number of layers should be larger than 0." | |
| self.conv_layers = nn.ModuleList() | |
| self.norm_layers = nn.ModuleList() | |
| self.conv_layers.append( | |
| nn.Conv1d( | |
| in_channels, hidden_channels, kernel_size, padding=kernel_size // 2 | |
| ) | |
| ) | |
| self.norm_layers.append(LayerNorm(hidden_channels)) | |
| self.relu_drop = nn.Sequential(nn.ReLU(), nn.Dropout(p_dropout)) | |
| for _ in range(n_layers - 1): | |
| self.conv_layers.append( | |
| nn.Conv1d( | |
| hidden_channels, | |
| hidden_channels, | |
| kernel_size, | |
| padding=kernel_size // 2, | |
| ) | |
| ) | |
| self.norm_layers.append(LayerNorm(hidden_channels)) | |
| self.proj = nn.Conv1d(hidden_channels, out_channels, 1) | |
| self.proj.weight.data.zero_() | |
| assert self.proj.bias is not None | |
| self.proj.bias.data.zero_() | |
| def forward(self, x: torch.Tensor, x_mask: torch.Tensor) -> torch.Tensor: | |
| x_org = x | |
| for i in range(self.n_layers): | |
| x = self.conv_layers[i](x * x_mask) | |
| x = self.norm_layers[i](x) | |
| x = self.relu_drop(x) | |
| x = x_org + self.proj(x) | |
| return x * x_mask | |
| class DDSConv(nn.Module): | |
| """ | |
| Dialted and Depth-Separable Convolution | |
| """ | |
| def __init__( | |
| self, channels: int, kernel_size: int, n_layers: int, p_dropout: float = 0.0 | |
| ) -> None: | |
| super().__init__() | |
| self.channels = channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.p_dropout = p_dropout | |
| self.drop = nn.Dropout(p_dropout) | |
| self.convs_sep = nn.ModuleList() | |
| self.convs_1x1 = nn.ModuleList() | |
| self.norms_1 = nn.ModuleList() | |
| self.norms_2 = nn.ModuleList() | |
| for i in range(n_layers): | |
| dilation = kernel_size**i | |
| padding = (kernel_size * dilation - dilation) // 2 | |
| self.convs_sep.append( | |
| nn.Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| groups=channels, | |
| dilation=dilation, | |
| padding=padding, | |
| ) | |
| ) | |
| self.convs_1x1.append(nn.Conv1d(channels, channels, 1)) | |
| self.norms_1.append(LayerNorm(channels)) | |
| self.norms_2.append(LayerNorm(channels)) | |
| def forward( | |
| self, x: torch.Tensor, x_mask: torch.Tensor, g: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| if g is not None: | |
| x = x + g | |
| for i in range(self.n_layers): | |
| y = self.convs_sep[i](x * x_mask) | |
| y = self.norms_1[i](y) | |
| y = F.gelu(y) | |
| y = self.convs_1x1[i](y) | |
| y = self.norms_2[i](y) | |
| y = F.gelu(y) | |
| y = self.drop(y) | |
| x = x + y | |
| return x * x_mask | |
| class WN(torch.nn.Module): | |
| def __init__( | |
| self, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| dilation_rate: int, | |
| n_layers: int, | |
| gin_channels: int = 0, | |
| p_dropout: float = 0, | |
| ) -> None: | |
| super(WN, self).__init__() | |
| assert kernel_size % 2 == 1 | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = (kernel_size,) | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.gin_channels = gin_channels | |
| self.p_dropout = p_dropout | |
| self.in_layers = torch.nn.ModuleList() | |
| self.res_skip_layers = torch.nn.ModuleList() | |
| self.drop = nn.Dropout(p_dropout) | |
| if gin_channels != 0: | |
| cond_layer = torch.nn.Conv1d( | |
| gin_channels, 2 * hidden_channels * n_layers, 1 | |
| ) | |
| self.cond_layer = torch.nn.utils.weight_norm(cond_layer, name="weight") | |
| for i in range(n_layers): | |
| dilation = dilation_rate**i | |
| padding = int((kernel_size * dilation - dilation) / 2) | |
| in_layer = torch.nn.Conv1d( | |
| hidden_channels, | |
| 2 * hidden_channels, | |
| kernel_size, | |
| dilation=dilation, | |
| padding=padding, | |
| ) | |
| in_layer = torch.nn.utils.weight_norm(in_layer, name="weight") | |
| self.in_layers.append(in_layer) | |
| # last one is not necessary | |
| if i < n_layers - 1: | |
| res_skip_channels = 2 * hidden_channels | |
| else: | |
| res_skip_channels = hidden_channels | |
| res_skip_layer = torch.nn.Conv1d(hidden_channels, res_skip_channels, 1) | |
| res_skip_layer = torch.nn.utils.weight_norm(res_skip_layer, name="weight") | |
| self.res_skip_layers.append(res_skip_layer) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| **kwargs: Any, | |
| ) -> torch.Tensor: | |
| output = torch.zeros_like(x) | |
| n_channels_tensor = torch.IntTensor([self.hidden_channels]) | |
| if g is not None: | |
| g = self.cond_layer(g) | |
| for i in range(self.n_layers): | |
| x_in = self.in_layers[i](x) | |
| if g is not None: | |
| cond_offset = i * 2 * self.hidden_channels | |
| g_l = g[:, cond_offset : cond_offset + 2 * self.hidden_channels, :] | |
| else: | |
| g_l = torch.zeros_like(x_in) | |
| acts = commons.fused_add_tanh_sigmoid_multiply(x_in, g_l, n_channels_tensor) | |
| acts = self.drop(acts) | |
| res_skip_acts = self.res_skip_layers[i](acts) | |
| if i < self.n_layers - 1: | |
| res_acts = res_skip_acts[:, : self.hidden_channels, :] | |
| x = (x + res_acts) * x_mask | |
| output = output + res_skip_acts[:, self.hidden_channels :, :] | |
| else: | |
| output = output + res_skip_acts | |
| return output * x_mask | |
| def remove_weight_norm(self) -> None: | |
| if self.gin_channels != 0: | |
| torch.nn.utils.remove_weight_norm(self.cond_layer) | |
| for l in self.in_layers: | |
| torch.nn.utils.remove_weight_norm(l) | |
| for l in self.res_skip_layers: | |
| torch.nn.utils.remove_weight_norm(l) | |
| class ResBlock1(torch.nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| kernel_size: int = 3, | |
| dilation: tuple[int, int, int] = (1, 3, 5), | |
| ) -> None: | |
| super(ResBlock1, self).__init__() | |
| self.convs1 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=commons.get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=commons.get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[2], | |
| padding=commons.get_padding(kernel_size, dilation[2]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs1.apply(commons.init_weights) | |
| self.convs2 = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=commons.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=commons.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=1, | |
| padding=commons.get_padding(kernel_size, 1), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs2.apply(commons.init_weights) | |
| def forward( | |
| self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| for c1, c2 in zip(self.convs1, self.convs2): | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| if x_mask is not None: | |
| xt = xt * x_mask | |
| xt = c1(xt) | |
| xt = F.leaky_relu(xt, LRELU_SLOPE) | |
| if x_mask is not None: | |
| xt = xt * x_mask | |
| xt = c2(xt) | |
| x = xt + x | |
| if x_mask is not None: | |
| x = x * x_mask | |
| return x | |
| def remove_weight_norm(self) -> None: | |
| for l in self.convs1: | |
| remove_weight_norm(l) | |
| for l in self.convs2: | |
| remove_weight_norm(l) | |
| class ResBlock2(torch.nn.Module): | |
| def __init__( | |
| self, channels: int, kernel_size: int = 3, dilation: tuple[int, int] = (1, 3) | |
| ) -> None: | |
| super(ResBlock2, self).__init__() | |
| self.convs = nn.ModuleList( | |
| [ | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[0], | |
| padding=commons.get_padding(kernel_size, dilation[0]), | |
| ) | |
| ), | |
| weight_norm( | |
| Conv1d( | |
| channels, | |
| channels, | |
| kernel_size, | |
| 1, | |
| dilation=dilation[1], | |
| padding=commons.get_padding(kernel_size, dilation[1]), | |
| ) | |
| ), | |
| ] | |
| ) | |
| self.convs.apply(commons.init_weights) | |
| def forward( | |
| self, x: torch.Tensor, x_mask: Optional[torch.Tensor] = None | |
| ) -> torch.Tensor: | |
| for c in self.convs: | |
| xt = F.leaky_relu(x, LRELU_SLOPE) | |
| if x_mask is not None: | |
| xt = xt * x_mask | |
| xt = c(xt) | |
| x = xt + x | |
| if x_mask is not None: | |
| x = x * x_mask | |
| return x | |
| def remove_weight_norm(self) -> None: | |
| for l in self.convs: | |
| remove_weight_norm(l) | |
| class Log(nn.Module): | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| reverse: bool = False, | |
| **kwargs: Any, | |
| ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: | |
| if not reverse: | |
| y = torch.log(torch.clamp_min(x, 1e-5)) * x_mask | |
| logdet = torch.sum(-y, [1, 2]) | |
| return y, logdet | |
| else: | |
| x = torch.exp(x) * x_mask | |
| return x | |
| class Flip(nn.Module): | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| *args: Any, | |
| reverse: bool = False, | |
| **kwargs: Any, | |
| ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: | |
| x = torch.flip(x, [1]) | |
| if not reverse: | |
| logdet = torch.zeros(x.size(0)).to(dtype=x.dtype, device=x.device) | |
| return x, logdet | |
| else: | |
| return x | |
| class ElementwiseAffine(nn.Module): | |
| def __init__(self, channels: int) -> None: | |
| super().__init__() | |
| self.channels = channels | |
| self.m = nn.Parameter(torch.zeros(channels, 1)) | |
| self.logs = nn.Parameter(torch.zeros(channels, 1)) | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| reverse: bool = False, | |
| **kwargs: Any, | |
| ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: | |
| if not reverse: | |
| y = self.m + torch.exp(self.logs) * x | |
| y = y * x_mask | |
| logdet = torch.sum(self.logs * x_mask, [1, 2]) | |
| return y, logdet | |
| else: | |
| x = (x - self.m) * torch.exp(-self.logs) * x_mask | |
| return x | |
| class ResidualCouplingLayer(nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| dilation_rate: int, | |
| n_layers: int, | |
| p_dropout: float = 0, | |
| gin_channels: int = 0, | |
| mean_only: bool = False, | |
| ) -> None: | |
| assert channels % 2 == 0, "channels should be divisible by 2" | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.dilation_rate = dilation_rate | |
| self.n_layers = n_layers | |
| self.half_channels = channels // 2 | |
| self.mean_only = mean_only | |
| self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
| self.enc = WN( | |
| hidden_channels, | |
| kernel_size, | |
| dilation_rate, | |
| n_layers, | |
| p_dropout=p_dropout, | |
| gin_channels=gin_channels, | |
| ) | |
| self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | |
| self.post.weight.data.zero_() | |
| assert self.post.bias is not None | |
| self.post.bias.data.zero_() | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| reverse: bool = False, | |
| ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) * x_mask | |
| h = self.enc(h, x_mask, g=g) | |
| stats = self.post(h) * x_mask | |
| if not self.mean_only: | |
| m, logs = torch.split(stats, [self.half_channels] * 2, 1) | |
| else: | |
| m = stats | |
| logs = torch.zeros_like(m) | |
| if not reverse: | |
| x1 = m + x1 * torch.exp(logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| logdet = torch.sum(logs, [1, 2]) | |
| return x, logdet | |
| else: | |
| x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| return x | |
| class ConvFlow(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| filter_channels: int, | |
| kernel_size: int, | |
| n_layers: int, | |
| num_bins: int = 10, | |
| tail_bound: float = 5.0, | |
| ) -> None: | |
| super().__init__() | |
| self.in_channels = in_channels | |
| self.filter_channels = filter_channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.num_bins = num_bins | |
| self.tail_bound = tail_bound | |
| self.half_channels = in_channels // 2 | |
| self.pre = nn.Conv1d(self.half_channels, filter_channels, 1) | |
| self.convs = DDSConv(filter_channels, kernel_size, n_layers, p_dropout=0.0) | |
| self.proj = nn.Conv1d( | |
| filter_channels, self.half_channels * (num_bins * 3 - 1), 1 | |
| ) | |
| self.proj.weight.data.zero_() | |
| assert self.proj.bias is not None | |
| self.proj.bias.data.zero_() | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| reverse: bool = False, | |
| ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) | |
| h = self.convs(h, x_mask, g=g) | |
| h = self.proj(h) * x_mask | |
| b, c, t = x0.shape | |
| h = h.reshape(b, c, -1, t).permute(0, 1, 3, 2) # [b, cx?, t] -> [b, c, t, ?] | |
| unnormalized_widths = h[..., : self.num_bins] / math.sqrt(self.filter_channels) | |
| unnormalized_heights = h[..., self.num_bins : 2 * self.num_bins] / math.sqrt( | |
| self.filter_channels | |
| ) | |
| unnormalized_derivatives = h[..., 2 * self.num_bins :] | |
| x1, logabsdet = piecewise_rational_quadratic_transform( | |
| x1, | |
| unnormalized_widths, | |
| unnormalized_heights, | |
| unnormalized_derivatives, | |
| inverse=reverse, | |
| tails="linear", | |
| tail_bound=self.tail_bound, | |
| ) | |
| x = torch.cat([x0, x1], 1) * x_mask | |
| logdet = torch.sum(logabsdet * x_mask, [1, 2]) | |
| if not reverse: | |
| return x, logdet | |
| else: | |
| return x | |
| class TransformerCouplingLayer(nn.Module): | |
| def __init__( | |
| self, | |
| channels: int, | |
| hidden_channels: int, | |
| kernel_size: int, | |
| n_layers: int, | |
| n_heads: int, | |
| p_dropout: float = 0, | |
| filter_channels: int = 0, | |
| mean_only: bool = False, | |
| wn_sharing_parameter: Optional[nn.Module] = None, | |
| gin_channels: int = 0, | |
| ) -> None: | |
| assert channels % 2 == 0, "channels should be divisible by 2" | |
| super().__init__() | |
| self.channels = channels | |
| self.hidden_channels = hidden_channels | |
| self.kernel_size = kernel_size | |
| self.n_layers = n_layers | |
| self.half_channels = channels // 2 | |
| self.mean_only = mean_only | |
| self.pre = nn.Conv1d(self.half_channels, hidden_channels, 1) | |
| self.enc = ( | |
| Encoder( | |
| hidden_channels, | |
| filter_channels, | |
| n_heads, | |
| n_layers, | |
| kernel_size, | |
| p_dropout, | |
| isflow=True, | |
| gin_channels=gin_channels, | |
| ) | |
| if wn_sharing_parameter is None | |
| else wn_sharing_parameter | |
| ) | |
| self.post = nn.Conv1d(hidden_channels, self.half_channels * (2 - mean_only), 1) | |
| self.post.weight.data.zero_() | |
| assert self.post.bias is not None | |
| self.post.bias.data.zero_() | |
| def forward( | |
| self, | |
| x: torch.Tensor, | |
| x_mask: torch.Tensor, | |
| g: Optional[torch.Tensor] = None, | |
| reverse: bool = False, | |
| ) -> Union[tuple[torch.Tensor, torch.Tensor], torch.Tensor]: | |
| x0, x1 = torch.split(x, [self.half_channels] * 2, 1) | |
| h = self.pre(x0) * x_mask | |
| h = self.enc(h, x_mask, g=g) | |
| stats = self.post(h) * x_mask | |
| if not self.mean_only: | |
| m, logs = torch.split(stats, [self.half_channels] * 2, 1) | |
| else: | |
| m = stats | |
| logs = torch.zeros_like(m) | |
| if not reverse: | |
| x1 = m + x1 * torch.exp(logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| logdet = torch.sum(logs, [1, 2]) | |
| return x, logdet | |
| else: | |
| x1 = (x1 - m) * torch.exp(-logs) * x_mask | |
| x = torch.cat([x0, x1], 1) | |
| return x | |