Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,63 +1,113 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from
|
|
|
|
| 3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
"""
|
| 5 |
-
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
|
| 6 |
-
"""
|
| 7 |
-
client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
|
| 8 |
|
|
|
|
| 9 |
|
| 10 |
-
|
| 11 |
-
message,
|
| 12 |
-
history: list[tuple[str, str]],
|
| 13 |
-
system_message,
|
| 14 |
-
max_tokens,
|
| 15 |
-
temperature,
|
| 16 |
-
top_p,
|
| 17 |
-
):
|
| 18 |
-
messages = [{"role": "system", "content": system_message}]
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
messages.append({"role": "user", "content": val[0]})
|
| 23 |
-
if val[1]:
|
| 24 |
-
messages.append({"role": "assistant", "content": val[1]})
|
| 25 |
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
stream=True,
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
| 41 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
"""
|
| 43 |
-
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
|
| 44 |
-
"""
|
| 45 |
-
demo = gr.ChatInterface(
|
| 46 |
-
respond,
|
| 47 |
-
additional_inputs=[
|
| 48 |
-
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
|
| 49 |
-
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
|
| 50 |
-
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
|
| 51 |
-
gr.Slider(
|
| 52 |
-
minimum=0.1,
|
| 53 |
-
maximum=1.0,
|
| 54 |
-
value=0.95,
|
| 55 |
-
step=0.05,
|
| 56 |
-
label="Top-p (nucleus sampling)",
|
| 57 |
-
),
|
| 58 |
-
],
|
| 59 |
-
)
|
| 60 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
if __name__ == "__main__":
|
| 63 |
demo.launch()
|
|
|
|
| 1 |
+
import time
|
| 2 |
import gradio as gr
|
| 3 |
+
from os import getenv
|
| 4 |
+
from openai import OpenAI
|
| 5 |
|
| 6 |
+
client = OpenAI(
|
| 7 |
+
base_url="https://openrouter.ai/api/v1",
|
| 8 |
+
api_key=getenv("OPENROUTER_API_KEY"),
|
| 9 |
+
)
|
| 10 |
+
|
| 11 |
+
css = """
|
| 12 |
+
.thought {
|
| 13 |
+
opacity: 0.8;
|
| 14 |
+
font-family: "Courier New", monospace;
|
| 15 |
+
border: 1px gray solid;
|
| 16 |
+
padding: 10px;
|
| 17 |
+
border-radius: 5px;
|
| 18 |
+
}
|
| 19 |
"""
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
+
js = """
|
| 22 |
|
| 23 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
+
with open("contemplator.txt", "r") as f:
|
| 26 |
+
system_msg = f.read()
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
def streaming(message, history, system_msg, model):
|
| 29 |
+
messages = [
|
| 30 |
+
{
|
| 31 |
+
"role": "system",
|
| 32 |
+
"content": system_msg
|
| 33 |
+
}
|
| 34 |
+
]
|
| 35 |
+
for user, assistant in history:
|
| 36 |
+
messages.append({
|
| 37 |
+
"role": "user",
|
| 38 |
+
"content": user
|
| 39 |
+
})
|
| 40 |
+
messages.append({
|
| 41 |
+
"role": "assistant",
|
| 42 |
+
"content": assistant
|
| 43 |
+
})
|
| 44 |
|
| 45 |
+
messages.append({
|
| 46 |
+
"role": "user",
|
| 47 |
+
"content": message
|
| 48 |
+
})
|
| 49 |
|
| 50 |
+
completion = client.chat.completions.create(
|
| 51 |
+
model=model,
|
| 52 |
+
messages=messages,
|
| 53 |
+
max_completion_tokens=100000,
|
| 54 |
stream=True,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
reply = ""
|
| 58 |
+
|
| 59 |
+
start_time = time.time()
|
| 60 |
+
for i, chunk in enumerate(completion):
|
| 61 |
+
reply += chunk.choices[0].delta.content
|
| 62 |
+
answer = ""
|
| 63 |
+
if not "</inner_thoughts>" in reply:
|
| 64 |
+
thought_text = f'<div class="thought">{reply.replace("<inner_thoughts>", "").strip()}</div>'
|
| 65 |
+
else:
|
| 66 |
+
thought_text = f'<div class="thought">{reply.replace("<inner_thoughts>", "").split("</inner_thoughts>")[0].strip()}</div>'
|
| 67 |
+
answer = reply.split("</inner_thoughts>")[1].replace("<final_answer>", "").replace("</final_answer>", "").strip()
|
| 68 |
+
thinking_prompt = "<p>" + "Thinking" + "." * (i % 5 + 1) + "</p>"
|
| 69 |
+
yield thinking_prompt + thought_text + "<br>" + answer
|
| 70 |
|
| 71 |
+
thinking_prompt = f"<p>Thought for {time.time() - start_time:.2f} seconds</p>"
|
| 72 |
+
yield thinking_prompt + thought_text + "<br>" + answer
|
| 73 |
+
|
| 74 |
+
markdown = """
|
| 75 |
+
## π« Overthink 1(o1)
|
| 76 |
|
| 77 |
+
Insprired by how o1 works, this LLM is instructed to generate very long and detailed chain-of-thoughts. It will think extra hard before providing an answer.
|
| 78 |
+
|
| 79 |
+
Actually this does help with reasoning, compared to normal step-by-step reasoning. I wrote a blog post about this [here](https://huggingface.co/blog/wenbopan/recreating-o1).
|
| 80 |
+
|
| 81 |
+
Sometimes this LLM overthinks for super simple questions, but it's fun to watch. Hope you enjoy it!
|
| 82 |
+
|
| 83 |
+
### System Message
|
| 84 |
+
|
| 85 |
+
This is done by instructing the model with a large system message, which you can check on the top tab.
|
| 86 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
|
| 88 |
+
with gr.Blocks(theme=gr.themes.Soft(), css=css, fill_height=True) as demo:
|
| 89 |
+
with gr.Row(equal_height=True):
|
| 90 |
+
with gr.Column(scale=1, min_width=300):
|
| 91 |
+
with gr.Tab("Settings"):
|
| 92 |
+
gr.Markdown(markdown)
|
| 93 |
+
model = gr.Dropdown(["nousresearch/hermes-3-llama-3.1-405b:free", "nousresearch/hermes-3-llama-3.1-70b", "meta-llama/llama-3.1-405b-instruct"], value="nousresearch/hermes-3-llama-3.1-405b:free", label="Model")
|
| 94 |
+
show_thoughts = gr.Checkbox(True, label="Show Thoughts", interactive=True)
|
| 95 |
+
with gr.Tab("System Message"):
|
| 96 |
+
system_msg = gr.TextArea(system_msg, label="System Message")
|
| 97 |
+
with gr.Column(scale=3, min_width=300):
|
| 98 |
+
gr.ChatInterface(
|
| 99 |
+
streaming,
|
| 100 |
+
additional_inputs=[
|
| 101 |
+
system_msg,
|
| 102 |
+
model
|
| 103 |
+
],
|
| 104 |
+
examples=[
|
| 105 |
+
["How do you do? ", None, None, None],
|
| 106 |
+
["How many R's in strawberry?", None, None, None],
|
| 107 |
+
["Solve the puzzle of 24 points: 2 4 9 1", None, None, None],
|
| 108 |
+
["Find x such that βxβ + x = 23/7. Express x as a common fraction.", None, None, None],
|
| 109 |
+
],
|
| 110 |
+
)
|
| 111 |
|
| 112 |
if __name__ == "__main__":
|
| 113 |
demo.launch()
|