Spaces:
Paused
Paused
Update codegen.py
Browse files- codegen.py +77 -40
codegen.py
CHANGED
|
@@ -1,45 +1,82 @@
|
|
| 1 |
-
|
| 2 |
import transformers
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
-
|
| 6 |
-
""
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
input_ids=
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
# Example usage
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import transformers
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
+
class CodeGenerator:
|
| 5 |
+
def __init__(self, model_name="bigscience/T0_3B"):
|
| 6 |
+
"""
|
| 7 |
+
Initializes the CodeGenerator with a specified model.
|
| 8 |
+
|
| 9 |
+
Args:
|
| 10 |
+
model_name (str): The name of the model to be used for code generation.
|
| 11 |
+
"""
|
| 12 |
+
self.model = transformers.AutoModelForCausalLM.from_pretrained(model_name)
|
| 13 |
+
self.tokenizer = transformers.AutoTokenizer.from_pretrained(model_name)
|
| 14 |
+
|
| 15 |
+
def generate_code(self, idea):
|
| 16 |
+
"""
|
| 17 |
+
Generates code based on a given idea using the specified model.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
idea (str): The idea for the code to be generated.
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
str: The generated code.
|
| 24 |
+
"""
|
| 25 |
+
input_text = self._format_input(idea)
|
| 26 |
+
input_ids = self.tokenizer.encode(input_text, return_tensors="pt")
|
| 27 |
+
output_sequences = self._generate_output(input_ids)
|
| 28 |
+
generated_code = self._extract_code(output_sequences)
|
| 29 |
+
|
| 30 |
+
return generated_code
|
| 31 |
+
|
| 32 |
+
def _format_input(self, idea):
|
| 33 |
+
"""
|
| 34 |
+
Formats the input text for the model.
|
| 35 |
+
|
| 36 |
+
Args:
|
| 37 |
+
idea (str): The idea for the code to be generated.
|
| 38 |
+
|
| 39 |
+
Returns:
|
| 40 |
+
str: Formatted input text.
|
| 41 |
+
"""
|
| 42 |
+
return f"# Idea: {idea}\n# Code:\n"
|
| 43 |
+
|
| 44 |
+
def _generate_output(self, input_ids):
|
| 45 |
+
"""
|
| 46 |
+
Generates output sequences from the model.
|
| 47 |
+
|
| 48 |
+
Args:
|
| 49 |
+
input_ids (tensor): The input IDs for the model.
|
| 50 |
+
|
| 51 |
+
Returns:
|
| 52 |
+
tensor: The generated output sequences.
|
| 53 |
+
"""
|
| 54 |
+
return self.model.generate(
|
| 55 |
+
input_ids=input_ids,
|
| 56 |
+
max_length=1024,
|
| 57 |
+
num_return_sequences=1,
|
| 58 |
+
no_repeat_ngram_size=2,
|
| 59 |
+
early_stopping=True,
|
| 60 |
+
temperature=0.7,
|
| 61 |
+
top_k=50,
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
def _extract_code(self, output_sequences):
|
| 65 |
+
"""
|
| 66 |
+
Extracts the generated code from the output sequences.
|
| 67 |
+
|
| 68 |
+
Args:
|
| 69 |
+
output_sequences (tensor): The generated output sequences.
|
| 70 |
+
|
| 71 |
+
Returns:
|
| 72 |
+
str: The extracted code.
|
| 73 |
+
"""
|
| 74 |
+
generated_code = self.tokenizer.decode(output_sequences[0], skip_special_tokens=True)
|
| 75 |
+
return generated_code.split("\n# Code:")[1].strip()
|
| 76 |
|
| 77 |
# Example usage
|
| 78 |
+
if __name__ == "__main__":
|
| 79 |
+
idea = "Write a Python function to calculate the factorial of a number"
|
| 80 |
+
code_generator = CodeGenerator()
|
| 81 |
+
generated_code = code_generator.generate_code(idea)
|
| 82 |
+
print(generated_code)
|