add more tokenizer
Browse files- requirements.txt +2 -1
- utils/compress_rate_util.py +2 -4
- utils/zh_util.py +3 -3
- vocab/__init__.py +4 -0
- vocab/byt5_small/__init__.py +3 -0
- vocab/llama/demo.py +17 -1
- vocab/mobilebert_uncased/__init__.py +2 -0
- vocab/mobilenet_v2/__init__.py +2 -0
- vocab/switch_c_2048/__init__.py +4 -0
requirements.txt
CHANGED
|
@@ -3,4 +3,5 @@ sentencepiece
|
|
| 3 |
tiktoken
|
| 4 |
icetk
|
| 5 |
torch
|
| 6 |
-
zhon
|
|
|
|
|
|
| 3 |
tiktoken
|
| 4 |
icetk
|
| 5 |
torch
|
| 6 |
+
zhon
|
| 7 |
+
nltk
|
utils/compress_rate_util.py
CHANGED
|
@@ -1,9 +1,7 @@
|
|
| 1 |
"""
|
| 2 |
|
| 3 |
|
| 4 |
-
|
| 5 |
-
英文数据:
|
| 6 |
-
|
| 7 |
-
|
| 8 |
|
| 9 |
"""
|
|
|
|
| 1 |
"""
|
| 2 |
|
| 3 |
|
| 4 |
+
中文数据:clue superclue
|
| 5 |
+
英文数据:glue cnn_dailymail gigaword
|
|
|
|
|
|
|
| 6 |
|
| 7 |
"""
|
utils/zh_util.py
CHANGED
|
@@ -72,7 +72,7 @@ def iter_vocab(tokenizer, name="", from_cache=True):
|
|
| 72 |
if from_cache and name in cache:
|
| 73 |
return cache[name]
|
| 74 |
|
| 75 |
-
f_out = open(name + "_vocab.
|
| 76 |
zh_token_count = {"total": 0, "中文单字": 0, "中文多字": 0}
|
| 77 |
|
| 78 |
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
|
|
@@ -91,7 +91,7 @@ def iter_vocab(tokenizer, name="", from_cache=True):
|
|
| 91 |
if isinstance(token, bytes):
|
| 92 |
token = token.decode("utf-8", errors="ignore")
|
| 93 |
|
| 94 |
-
digit_count = get_digit_count(
|
| 95 |
zh_count = get_zh_count(decode_str)
|
| 96 |
space_count = get_space_count(decode_str)
|
| 97 |
|
|
@@ -99,7 +99,7 @@ def iter_vocab(tokenizer, name="", from_cache=True):
|
|
| 99 |
{"id": token_id,
|
| 100 |
"token": token,
|
| 101 |
"token_decode": decode_str,
|
| 102 |
-
"token_len": len(
|
| 103 |
"zh_count": zh_count,
|
| 104 |
"space_count": space_count,
|
| 105 |
"digit_count": digit_count,
|
|
|
|
| 72 |
if from_cache and name in cache:
|
| 73 |
return cache[name]
|
| 74 |
|
| 75 |
+
f_out = open(name + "_vocab.jsonl", "w", encoding="utf-8")
|
| 76 |
zh_token_count = {"total": 0, "中文单字": 0, "中文多字": 0}
|
| 77 |
|
| 78 |
# zh_token_count = {"total": 0, "包含1个中文单字": 0, "中文多字": 0}
|
|
|
|
| 91 |
if isinstance(token, bytes):
|
| 92 |
token = token.decode("utf-8", errors="ignore")
|
| 93 |
|
| 94 |
+
digit_count = get_digit_count(decode_str)
|
| 95 |
zh_count = get_zh_count(decode_str)
|
| 96 |
space_count = get_space_count(decode_str)
|
| 97 |
|
|
|
|
| 99 |
{"id": token_id,
|
| 100 |
"token": token,
|
| 101 |
"token_decode": decode_str,
|
| 102 |
+
"token_len": len(decode_str),
|
| 103 |
"zh_count": zh_count,
|
| 104 |
"space_count": space_count,
|
| 105 |
"digit_count": digit_count,
|
vocab/__init__.py
CHANGED
|
@@ -130,6 +130,10 @@ all_tokenizers = [
|
|
| 130 |
"phi_1",
|
| 131 |
"phi_2",
|
| 132 |
"solar_10_7b",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
"wizardcoder_python_7b_v1",
|
| 134 |
"wizardlm_7b_v1",
|
| 135 |
"wizardmath_70b_v1",
|
|
|
|
| 130 |
"phi_1",
|
| 131 |
"phi_2",
|
| 132 |
"solar_10_7b",
|
| 133 |
+
"mobilebert_uncased",
|
| 134 |
+
"mobilenet_v2",
|
| 135 |
+
"switch_c_2048",
|
| 136 |
+
"byt5_small",
|
| 137 |
"wizardcoder_python_7b_v1",
|
| 138 |
"wizardlm_7b_v1",
|
| 139 |
"wizardmath_70b_v1",
|
vocab/byt5_small/__init__.py
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
|
| 3 |
+
tokenizer = AutoTokenizer.from_pretrained('google/byt5-small')
|
vocab/llama/demo.py
CHANGED
|
@@ -30,4 +30,20 @@ tokens = [ 1, 29961, 25580, 29962, 3532, 14816, 29903, 6778, 13, 3492,
|
|
| 30 |
text = tokenizer.decode(tokens)
|
| 31 |
print(text)
|
| 32 |
for token_id in tokens:
|
| 33 |
-
print(json.dumps({"token_id": token_id, "decode_str": tokenizer.decode([token_id]), "token": tokenizer.convert_ids_to_tokens([token_id][0])}, ensure_ascii=False))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
text = tokenizer.decode(tokens)
|
| 31 |
print(text)
|
| 32 |
for token_id in tokens:
|
| 33 |
+
print(json.dumps({"token_id": token_id, "decode_str": tokenizer.decode([token_id]), "token": tokenizer.convert_ids_to_tokens([token_id][0])}, ensure_ascii=False))
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def byte_token():
|
| 38 |
+
"""
|
| 39 |
+
为什么 \n 是 "<0x0A>"
|
| 40 |
+
|
| 41 |
+
8 11 145
|
| 42 |
+
:return:
|
| 43 |
+
"""
|
| 44 |
+
for token_id in [8, 11, 145]:
|
| 45 |
+
token_str = tokenizer.decode([token_id])
|
| 46 |
+
print(token_str)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
byte_token()
|
vocab/mobilebert_uncased/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
tokenizer = AutoTokenizer.from_pretrained("google/mobilebert-uncased", trust_remote_code=True)
|
vocab/mobilenet_v2/__init__.py
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoTokenizer
|
| 2 |
+
tokenizer = AutoTokenizer.from_pretrained("google/mobilenet_v2_1.0_224", trust_remote_code=True)
|
vocab/switch_c_2048/__init__.py
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
from transformers import AutoTokenizer
|
| 3 |
+
|
| 4 |
+
tokenizer = AutoTokenizer.from_pretrained("google/switch-c-2048")
|