Spaces:
Runtime error
Runtime error
| import sys | |
| import PIL.Image | |
| import numpy as np | |
| import torch | |
| from tqdm import tqdm | |
| import modules.upscaler | |
| from modules import devices, modelloader, script_callbacks, errors | |
| from scunet_model_arch import SCUNet | |
| from modules.modelloader import load_file_from_url | |
| from modules.shared import opts | |
| class UpscalerScuNET(modules.upscaler.Upscaler): | |
| def __init__(self, dirname): | |
| self.name = "ScuNET" | |
| self.model_name = "ScuNET GAN" | |
| self.model_name2 = "ScuNET PSNR" | |
| self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" | |
| self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" | |
| self.user_path = dirname | |
| super().__init__() | |
| model_paths = self.find_models(ext_filter=[".pth"]) | |
| scalers = [] | |
| add_model2 = True | |
| for file in model_paths: | |
| if file.startswith("http"): | |
| name = self.model_name | |
| else: | |
| name = modelloader.friendly_name(file) | |
| if name == self.model_name2 or file == self.model_url2: | |
| add_model2 = False | |
| try: | |
| scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) | |
| scalers.append(scaler_data) | |
| except Exception: | |
| errors.report(f"Error loading ScuNET model: {file}", exc_info=True) | |
| if add_model2: | |
| scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) | |
| scalers.append(scaler_data2) | |
| self.scalers = scalers | |
| def tiled_inference(img, model): | |
| # test the image tile by tile | |
| h, w = img.shape[2:] | |
| tile = opts.SCUNET_tile | |
| tile_overlap = opts.SCUNET_tile_overlap | |
| if tile == 0: | |
| return model(img) | |
| device = devices.get_device_for('scunet') | |
| assert tile % 8 == 0, "tile size should be a multiple of window_size" | |
| sf = 1 | |
| stride = tile - tile_overlap | |
| h_idx_list = list(range(0, h - tile, stride)) + [h - tile] | |
| w_idx_list = list(range(0, w - tile, stride)) + [w - tile] | |
| E = torch.zeros(1, 3, h * sf, w * sf, dtype=img.dtype, device=device) | |
| W = torch.zeros_like(E, dtype=devices.dtype, device=device) | |
| with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="ScuNET tiles") as pbar: | |
| for h_idx in h_idx_list: | |
| for w_idx in w_idx_list: | |
| in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] | |
| out_patch = model(in_patch) | |
| out_patch_mask = torch.ones_like(out_patch) | |
| E[ | |
| ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
| ].add_(out_patch) | |
| W[ | |
| ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf | |
| ].add_(out_patch_mask) | |
| pbar.update(1) | |
| output = E.div_(W) | |
| return output | |
| def do_upscale(self, img: PIL.Image.Image, selected_file): | |
| devices.torch_gc() | |
| try: | |
| model = self.load_model(selected_file) | |
| except Exception as e: | |
| print(f"ScuNET: Unable to load model from {selected_file}: {e}", file=sys.stderr) | |
| return img | |
| device = devices.get_device_for('scunet') | |
| tile = opts.SCUNET_tile | |
| h, w = img.height, img.width | |
| np_img = np.array(img) | |
| np_img = np_img[:, :, ::-1] # RGB to BGR | |
| np_img = np_img.transpose((2, 0, 1)) / 255 # HWC to CHW | |
| torch_img = torch.from_numpy(np_img).float().unsqueeze(0).to(device) # type: ignore | |
| if tile > h or tile > w: | |
| _img = torch.zeros(1, 3, max(h, tile), max(w, tile), dtype=torch_img.dtype, device=torch_img.device) | |
| _img[:, :, :h, :w] = torch_img # pad image | |
| torch_img = _img | |
| torch_output = self.tiled_inference(torch_img, model).squeeze(0) | |
| torch_output = torch_output[:, :h * 1, :w * 1] # remove padding, if any | |
| np_output: np.ndarray = torch_output.float().cpu().clamp_(0, 1).numpy() | |
| del torch_img, torch_output | |
| devices.torch_gc() | |
| output = np_output.transpose((1, 2, 0)) # CHW to HWC | |
| output = output[:, :, ::-1] # BGR to RGB | |
| return PIL.Image.fromarray((output * 255).astype(np.uint8)) | |
| def load_model(self, path: str): | |
| device = devices.get_device_for('scunet') | |
| if path.startswith("http"): | |
| # TODO: this doesn't use `path` at all? | |
| filename = load_file_from_url(self.model_url, model_dir=self.model_download_path, file_name=f"{self.name}.pth") | |
| else: | |
| filename = path | |
| model = SCUNet(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) | |
| model.load_state_dict(torch.load(filename), strict=True) | |
| model.eval() | |
| for _, v in model.named_parameters(): | |
| v.requires_grad = False | |
| model = model.to(device) | |
| return model | |
| def on_ui_settings(): | |
| import gradio as gr | |
| from modules import shared | |
| shared.opts.add_option("SCUNET_tile", shared.OptionInfo(256, "Tile size for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")).info("0 = no tiling")) | |
| shared.opts.add_option("SCUNET_tile_overlap", shared.OptionInfo(8, "Tile overlap for SCUNET upscalers.", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, section=('upscaling', "Upscaling")).info("Low values = visible seam")) | |
| script_callbacks.on_ui_settings(on_ui_settings) | |