initial commit
Browse files
app.py
ADDED
|
@@ -0,0 +1,289 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
# gradio for visual demo
|
| 4 |
+
import gradio as gr
|
| 5 |
+
|
| 6 |
+
# transformers for easy access to nnet
|
| 7 |
+
os.system("pip install git+https://github.com/huggingface/transformers.git")
|
| 8 |
+
os.system("pip install datasets")
|
| 9 |
+
os.system("pip install scipy")
|
| 10 |
+
os.system("pip install torch")
|
| 11 |
+
|
| 12 |
+
from transformers import AutoImageProcessor, AutoModelForImageClassification, DPTForDepthEstimation, Mask2FormerForUniversalSegmentation
|
| 13 |
+
import torch
|
| 14 |
+
import numpy as np
|
| 15 |
+
from PIL import Image
|
| 16 |
+
import requests
|
| 17 |
+
from collections import defaultdict
|
| 18 |
+
|
| 19 |
+
palette = np.asarray([
|
| 20 |
+
[0, 0, 0],
|
| 21 |
+
[120, 120, 120],
|
| 22 |
+
[180, 120, 120],
|
| 23 |
+
[6, 230, 230],
|
| 24 |
+
[80, 50, 50],
|
| 25 |
+
[4, 200, 3],
|
| 26 |
+
[120, 120, 80],
|
| 27 |
+
[140, 140, 140],
|
| 28 |
+
[204, 5, 255],
|
| 29 |
+
[230, 230, 230],
|
| 30 |
+
[4, 250, 7],
|
| 31 |
+
[224, 5, 255],
|
| 32 |
+
[235, 255, 7],
|
| 33 |
+
[150, 5, 61],
|
| 34 |
+
[120, 120, 70],
|
| 35 |
+
[8, 255, 51],
|
| 36 |
+
[255, 6, 82],
|
| 37 |
+
[143, 255, 140],
|
| 38 |
+
[204, 255, 4],
|
| 39 |
+
[255, 51, 7],
|
| 40 |
+
[204, 70, 3],
|
| 41 |
+
[0, 102, 200],
|
| 42 |
+
[61, 230, 250],
|
| 43 |
+
[255, 6, 51],
|
| 44 |
+
[11, 102, 255],
|
| 45 |
+
[255, 7, 71],
|
| 46 |
+
[255, 9, 224],
|
| 47 |
+
[9, 7, 230],
|
| 48 |
+
[220, 220, 220],
|
| 49 |
+
[255, 9, 92],
|
| 50 |
+
[112, 9, 255],
|
| 51 |
+
[8, 255, 214],
|
| 52 |
+
[7, 255, 224],
|
| 53 |
+
[255, 184, 6],
|
| 54 |
+
[10, 255, 71],
|
| 55 |
+
[255, 41, 10],
|
| 56 |
+
[7, 255, 255],
|
| 57 |
+
[224, 255, 8],
|
| 58 |
+
[102, 8, 255],
|
| 59 |
+
[255, 61, 6],
|
| 60 |
+
[255, 194, 7],
|
| 61 |
+
[255, 122, 8],
|
| 62 |
+
[0, 255, 20],
|
| 63 |
+
[255, 8, 41],
|
| 64 |
+
[255, 5, 153],
|
| 65 |
+
[6, 51, 255],
|
| 66 |
+
[235, 12, 255],
|
| 67 |
+
[160, 150, 20],
|
| 68 |
+
[0, 163, 255],
|
| 69 |
+
[140, 140, 140],
|
| 70 |
+
[250, 10, 15],
|
| 71 |
+
[20, 255, 0],
|
| 72 |
+
[31, 255, 0],
|
| 73 |
+
[255, 31, 0],
|
| 74 |
+
[255, 224, 0],
|
| 75 |
+
[153, 255, 0],
|
| 76 |
+
[0, 0, 255],
|
| 77 |
+
[255, 71, 0],
|
| 78 |
+
[0, 235, 255],
|
| 79 |
+
[0, 173, 255],
|
| 80 |
+
[31, 0, 255],
|
| 81 |
+
[11, 200, 200],
|
| 82 |
+
[255, 82, 0],
|
| 83 |
+
[0, 255, 245],
|
| 84 |
+
[0, 61, 255],
|
| 85 |
+
[0, 255, 112],
|
| 86 |
+
[0, 255, 133],
|
| 87 |
+
[255, 0, 0],
|
| 88 |
+
[255, 163, 0],
|
| 89 |
+
[255, 102, 0],
|
| 90 |
+
[194, 255, 0],
|
| 91 |
+
[0, 143, 255],
|
| 92 |
+
[51, 255, 0],
|
| 93 |
+
[0, 82, 255],
|
| 94 |
+
[0, 255, 41],
|
| 95 |
+
[0, 255, 173],
|
| 96 |
+
[10, 0, 255],
|
| 97 |
+
[173, 255, 0],
|
| 98 |
+
[0, 255, 153],
|
| 99 |
+
[255, 92, 0],
|
| 100 |
+
[255, 0, 255],
|
| 101 |
+
[255, 0, 245],
|
| 102 |
+
[255, 0, 102],
|
| 103 |
+
[255, 173, 0],
|
| 104 |
+
[255, 0, 20],
|
| 105 |
+
[255, 184, 184],
|
| 106 |
+
[0, 31, 255],
|
| 107 |
+
[0, 255, 61],
|
| 108 |
+
[0, 71, 255],
|
| 109 |
+
[255, 0, 204],
|
| 110 |
+
[0, 255, 194],
|
| 111 |
+
[0, 255, 82],
|
| 112 |
+
[0, 10, 255],
|
| 113 |
+
[0, 112, 255],
|
| 114 |
+
[51, 0, 255],
|
| 115 |
+
[0, 194, 255],
|
| 116 |
+
[0, 122, 255],
|
| 117 |
+
[0, 255, 163],
|
| 118 |
+
[255, 153, 0],
|
| 119 |
+
[0, 255, 10],
|
| 120 |
+
[255, 112, 0],
|
| 121 |
+
[143, 255, 0],
|
| 122 |
+
[82, 0, 255],
|
| 123 |
+
[163, 255, 0],
|
| 124 |
+
[255, 235, 0],
|
| 125 |
+
[8, 184, 170],
|
| 126 |
+
[133, 0, 255],
|
| 127 |
+
[0, 255, 92],
|
| 128 |
+
[184, 0, 255],
|
| 129 |
+
[255, 0, 31],
|
| 130 |
+
[0, 184, 255],
|
| 131 |
+
[0, 214, 255],
|
| 132 |
+
[255, 0, 112],
|
| 133 |
+
[92, 255, 0],
|
| 134 |
+
[0, 224, 255],
|
| 135 |
+
[112, 224, 255],
|
| 136 |
+
[70, 184, 160],
|
| 137 |
+
[163, 0, 255],
|
| 138 |
+
[153, 0, 255],
|
| 139 |
+
[71, 255, 0],
|
| 140 |
+
[255, 0, 163],
|
| 141 |
+
[255, 204, 0],
|
| 142 |
+
[255, 0, 143],
|
| 143 |
+
[0, 255, 235],
|
| 144 |
+
[133, 255, 0],
|
| 145 |
+
[255, 0, 235],
|
| 146 |
+
[245, 0, 255],
|
| 147 |
+
[255, 0, 122],
|
| 148 |
+
[255, 245, 0],
|
| 149 |
+
[10, 190, 212],
|
| 150 |
+
[214, 255, 0],
|
| 151 |
+
[0, 204, 255],
|
| 152 |
+
[20, 0, 255],
|
| 153 |
+
[255, 255, 0],
|
| 154 |
+
[0, 153, 255],
|
| 155 |
+
[0, 41, 255],
|
| 156 |
+
[0, 255, 204],
|
| 157 |
+
[41, 0, 255],
|
| 158 |
+
[41, 255, 0],
|
| 159 |
+
[173, 0, 255],
|
| 160 |
+
[0, 245, 255],
|
| 161 |
+
[71, 0, 255],
|
| 162 |
+
[122, 0, 255],
|
| 163 |
+
[0, 255, 184],
|
| 164 |
+
[0, 92, 255],
|
| 165 |
+
[184, 255, 0],
|
| 166 |
+
[0, 133, 255],
|
| 167 |
+
[255, 214, 0],
|
| 168 |
+
[25, 194, 194],
|
| 169 |
+
[102, 255, 0],
|
| 170 |
+
[92, 0, 255],
|
| 171 |
+
])
|
| 172 |
+
|
| 173 |
+
depth_image_processor = AutoImageProcessor.from_pretrained("facebook/dpt-dinov2-small-nyu")
|
| 174 |
+
depth_model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-small-nyu")
|
| 175 |
+
|
| 176 |
+
def compute_depth(img):
|
| 177 |
+
# prepare image for the model
|
| 178 |
+
inputs = depth_image_processor(images=img, return_tensors="pt")
|
| 179 |
+
|
| 180 |
+
with torch.no_grad():
|
| 181 |
+
outputs = depth_model(**inputs)
|
| 182 |
+
predicted_depth = outputs.predicted_depth
|
| 183 |
+
|
| 184 |
+
# interpolate to original size
|
| 185 |
+
prediction = torch.nn.functional.interpolate(
|
| 186 |
+
predicted_depth.unsqueeze(1),
|
| 187 |
+
size=img.size[::-1],
|
| 188 |
+
mode="bicubic",
|
| 189 |
+
align_corners=False,
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
# visualize the prediction
|
| 193 |
+
output = prediction.squeeze().cpu().numpy()
|
| 194 |
+
formatted = (output * 255 / np.max(output)).astype("uint8")
|
| 195 |
+
depth = Image.fromarray(formatted)
|
| 196 |
+
return [depth, "depth"]
|
| 197 |
+
|
| 198 |
+
clas_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-small-imagenet1k-1-layer')
|
| 199 |
+
clas_model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-small-imagenet1k-1-layer')
|
| 200 |
+
|
| 201 |
+
def compute_clas(img):
|
| 202 |
+
inputs = clas_processor(images=img, return_tensors="pt")
|
| 203 |
+
outputs = clas_model(**inputs)
|
| 204 |
+
logits = outputs.logits
|
| 205 |
+
predicted_class_idx = logits.argmax(-1).item()
|
| 206 |
+
return[img, clas_model.config.id2label[predicted_class_idx]]
|
| 207 |
+
|
| 208 |
+
m2f_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
|
| 209 |
+
m2f_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
|
| 210 |
+
|
| 211 |
+
def seg2sem(seg):
|
| 212 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 213 |
+
|
| 214 |
+
handles = []
|
| 215 |
+
for label, color in enumerate(palette):
|
| 216 |
+
color_seg[seg == label, :] = color
|
| 217 |
+
if (seg == label).count_nonzero() > 0:
|
| 218 |
+
handles.append(m2f_model.config.id2label[label])
|
| 219 |
+
handles.append(color)
|
| 220 |
+
|
| 221 |
+
color_seg = color_seg.astype(np.uint8)
|
| 222 |
+
image = Image.fromarray(color_seg)
|
| 223 |
+
|
| 224 |
+
return [image,handles]
|
| 225 |
+
|
| 226 |
+
def seg2pano(seg, segments_info):
|
| 227 |
+
color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3
|
| 228 |
+
|
| 229 |
+
handles = []
|
| 230 |
+
for label, color in enumerate(palette):
|
| 231 |
+
color_seg[seg == label, :] = color
|
| 232 |
+
|
| 233 |
+
color_seg = color_seg.astype(np.uint8)
|
| 234 |
+
image = Image.fromarray(color_seg)
|
| 235 |
+
|
| 236 |
+
instances_counter = defaultdict(int)
|
| 237 |
+
handles = []
|
| 238 |
+
for segment in segments_info:
|
| 239 |
+
segment_id = segment['id']
|
| 240 |
+
segment_label_id = segment['label_id']
|
| 241 |
+
segment_label = m2f_model.config.id2label[segment_label_id]
|
| 242 |
+
label = f"{segment_label}-{instances_counter[segment_label_id]}"
|
| 243 |
+
instances_counter[segment_label_id] += 1
|
| 244 |
+
color = palette[segment_id]
|
| 245 |
+
handles.append(label)
|
| 246 |
+
handles.append(color)
|
| 247 |
+
return [image,handles]
|
| 248 |
+
|
| 249 |
+
def compute_m2f_sem_seg(img):
|
| 250 |
+
inputs = m2f_processor(images=img, return_tensors="pt")
|
| 251 |
+
|
| 252 |
+
with torch.no_grad():
|
| 253 |
+
outputs = m2f_model(**inputs)
|
| 254 |
+
|
| 255 |
+
seg = m2f_processor.post_process_semantic_segmentation(
|
| 256 |
+
outputs, target_sizes=[img.size[::-1]]
|
| 257 |
+
)[0]
|
| 258 |
+
|
| 259 |
+
return seg2sem(seg)
|
| 260 |
+
|
| 261 |
+
def compute_m2f_pano_seg(img):
|
| 262 |
+
inputs = m2f_processor(images=img, return_tensors="pt")
|
| 263 |
+
|
| 264 |
+
with torch.no_grad():
|
| 265 |
+
outputs = m2f_model(**inputs)
|
| 266 |
+
|
| 267 |
+
seg = m2f_processor.post_process_panoptic_segmentation(
|
| 268 |
+
outputs, target_sizes=[img.size[::-1]]
|
| 269 |
+
)[0]
|
| 270 |
+
|
| 271 |
+
return seg2pano(seg["segmentation"], seg["segments_info"])
|
| 272 |
+
|
| 273 |
+
labels = ["Dinov2 - Depth", "Dinov2 - Classification", "M2F - Semantic Segmentation", "M2F - Panoptic Segmentation"]
|
| 274 |
+
|
| 275 |
+
# main function
|
| 276 |
+
def detect(img, application):
|
| 277 |
+
if application == labels[0]:
|
| 278 |
+
return compute_depth(img)
|
| 279 |
+
elif application == labels[1]:
|
| 280 |
+
return compute_clas(img)
|
| 281 |
+
elif application == labels[2]:
|
| 282 |
+
return compute_m2f_sem_seg(img)
|
| 283 |
+
elif application == labels[3]:
|
| 284 |
+
return compute_m2f_pano_seg(img)
|
| 285 |
+
return img
|
| 286 |
+
|
| 287 |
+
# visual gradio interface
|
| 288 |
+
iface = gr.Interface(fn=detect, inputs=[gr.Image(type="pil"), gr.Radio(labels, label="Application")], outputs=[gr.Image(type="pil"), gr.Textbox()])
|
| 289 |
+
iface.launch(debug=True)
|