caprl / app.py
yuhangzang
update examples
50dd42e
import gradio as gr
import spaces
import torch
from PIL import Image
from transformers import AutoProcessor, Qwen2_5_VLForConditionalGeneration
MODEL_ID = "internlm/CapRL-3B"
DEFAULT_PROMPT = "Describe the image in detail."
MAX_NEW_TOKENS = 4096
# Default demo content
DEFAULT_IMAGE = "./examples/1909.png"
DEFAULT_CAPTION = (
"The image is a bar chart from the Pew Research Center that illustrates how older Republicans and Republican leaners view Donald Trump, specifically focusing on how many describe the phrase \"fights for what I believe in\" to describe Trump. The data is based on a survey conducted from February 4-15, 2020, among U.S. adults who identify as Republicans or Republican-leaning independents.\n\n"
"### Title:\n"
"Older Republicans especially likely to see Trump as fighting for their beliefs\n\n"
"### Main Question:\n"
"Among Republicans and Republican leaners, % who say the phrase 'fights for what I believe in' describes Trump ...\n\n"
"### Data Breakdown:\n\n"
"1. **All Rep/Lean Rep (Overall):**\n"
" - Very well: 51%\n"
" - Fairly well: 36%\n"
" - NET: 87%\n\n"
"2. **Ages 18-29:**\n"
" - Very well: 31%\n"
" - Fairly well: 45%\n"
" - NET: 76%\n\n"
"3. **30-49:**\n"
" - Very well: 41%\n"
" - Fairly well: 42%\n"
" - NET: 82%\n\n"
"4. **50-64:**\n"
" - Very well: 58%\n"
" - Fairly well: 33%\n"
" - NET: 92%\n\n"
"5. **65+:**\n"
" - Very well: 68%\n"
" - Fairly well: 26%\n"
" - NET: 94%\n\n"
"6. **Postgrad:**\n"
" - Very well: 42%\n"
" - Fairly well: 38%\n"
" - NET: 80%\n\n"
"7. **College grad:**\n"
" - Very well: 45%\n"
" - Fairly well: 40%\n"
" - NET: 85%\n\n"
"8. **Some college:**\n"
" - Very well: 51%\n"
" - Fairly well: 36%\n"
" - NET: 87%\n\n"
"9. **HS or less:**\n"
" - Very well: 56%\n"
" - Fairly well: 33%\n"
" - NET: 89\n\n"
"10. **Conserv (Conservative):**\n"
" - Very well: 63%\n"
" - Fairly well: 31%\n"
" - NET: 94%\n\n"
"11. **Mod/Lib (Moderate/Liberal):**\n"
" - Very well: 32%\n"
" - Fairly well: 44%\n"
" - NET: 75\n\n"
"12. **Republican:**\n"
" - Very well: 61%\n"
" - Fairly well: 32%\n"
" - NET: 93\n\n"
"13. **Lean Republican:**\n"
" - Very well: 36%\n"
" - Fairly well: 41%\n"
" - NET: 77\n\n"
"### Notes:\n"
"- The note at the bottom states that the data is based on Republicans and Republican-leaning independents.\n"
"- The source is a survey of U.S. adults conducted from February 4-15, 2020.\n\n"
"### Key Observations:\n"
"1. Older Republicans (65+) are the most likely to see Trump as someone who \"fights for what I believe in,\" with a net positive percentage of 94.\n"
"2. Younger age groups (18-29) have the lowest net positive percentage at 76.\n"
"3. Those with higher educational backgrounds (postgrad and college grad) have slightly lower net positive percentages compared to those with some college education (80 vs. 85).\n"
"4. Conservatives (63% very well) are the most likely to see Trump this way, followed by Republicans (61%).\n"
"5. Lean Republicans (36% very well) have the lowest percentage among the leaner categories.\n\n"
"This detailed description should provide a pure text model with sufficient information to answer any related questions about the image."
)
DEFAULT_CAPTION_TOKENS = 826
def get_device() -> str:
return "cuda" if torch.cuda.is_available() else "cpu"
def select_dtype(device: str):
if device == "cuda":
if torch.cuda.is_bf16_supported():
return torch.bfloat16
return torch.float16
return torch.float32
def load_model():
device = get_device()
dtype = select_dtype(device)
# Use device_map="auto" for proper GPU allocation with spaces.GPU decorator
model = Qwen2_5_VLForConditionalGeneration.from_pretrained(
MODEL_ID,
torch_dtype=dtype,
device_map="auto",
trust_remote_code=True,
)
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
return model, processor
MODEL, PROCESSOR = load_model()
@spaces.GPU
@torch.inference_mode()
def generate_caption(image: Image.Image):
if image is None:
return "", 0
try:
# Validate image
if not isinstance(image, Image.Image):
return "Error: Invalid image format", 0
# Check image size (warn if too large)
max_size = 4096
if image.width > max_size or image.height > max_size:
# Resize if too large to prevent OOM
image.thumbnail((max_size, max_size), Image.Resampling.LANCZOS)
device = MODEL.device
messages = [
{
"role": "user",
"content": [
{"type": "image"},
{"type": "text", "text": DEFAULT_PROMPT},
],
}
]
prompt_text = PROCESSOR.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
inputs = PROCESSOR(
text=[prompt_text],
images=[image],
return_tensors="pt",
).to(device)
generated_ids = MODEL.generate(
**inputs,
max_new_tokens=MAX_NEW_TOKENS,
do_sample=False,
)
generated_ids_trimmed = [
out_ids[len(in_ids) :] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
]
output_text = PROCESSOR.batch_decode(
generated_ids_trimmed, skip_special_tokens=True, clean_up_tokenization_spaces=False
)
caption = output_text[0].strip()
input_ids = inputs.get("input_ids")
input_length = input_ids.shape[-1] if input_ids is not None else 0
total_length = generated_ids.shape[-1]
num_generated_tokens = max(total_length - input_length, 0)
return caption, int(num_generated_tokens)
except torch.cuda.OutOfMemoryError:
torch.cuda.empty_cache()
return "Error: Out of GPU memory. Please try with a smaller image.", 0
except Exception as e:
return f"Error generating caption: {str(e)}", 0
with gr.Blocks(title="CapRL Image Captioning") as demo:
gr.Markdown("# 🎨 CapRL for Image Captioning")
gr.Markdown("### CapRL: Stimulating Dense Image Caption Capabilities via Reinforcement Learning")
gr.Markdown("✨ Upload an image to generate a detailed caption with CapRL-3B! ✨")
gr.Markdown(
"""
πŸ“– <a href="https://arxiv.org/abs/2509.22647">Paper</a> | 🏠 <a href="https://github.com/InternLM/CapRL">Github</a> | πŸ€— <a href="https://huggingface.co/internlm/CapRL-3B">CapRL-3B Model</a> | πŸ€— <a href="https://huggingface.co/yuhangzang/CapRL-InternVL3.5-8B">CapRL-InternVL3.5-8B Model</a> |
πŸ€— <a href="https://huggingface.co/datasets/internlm/CapRL-2M">CapRL-2M Dataset</a>
πŸ€— <a href="https://huggingface.co/collections/long-xing1/caprl-68d64ac32ded31596c36e189">CapRL Collection</a> | πŸ“° <a href="https://huggingface.co/papers/2509.22647">Daily Paper</a> | πŸ’Ύ <a href="https://huggingface.co/mradermacher/CapRL-3B-GGUF">CapRL-3B-GGUF</a> | πŸ’Ύ <a href="https://huggingface.co/mradermacher/CapRL-3B-i1-GGUF">CapRL-3B-i1-GGUF</a>
"""
)
with gr.Row():
with gr.Column():
# Preload a default image to match the provided caption
image_input = gr.Image(type="pil", label="Input Image", value=Image.open(DEFAULT_IMAGE))
generate_button = gr.Button("Generate Caption")
with gr.Column():
# Show a default caption and its token count on load
caption_output = gr.Textbox(label="Caption", lines=6, value=DEFAULT_CAPTION)
token_output = gr.Number(label="Generated Tokens", precision=0, value=DEFAULT_CAPTION_TOKENS)
generate_button.click(
fn=generate_caption,
inputs=image_input,
outputs=[caption_output, token_output],
show_progress=True,
)
image_input.upload(
fn=generate_caption,
inputs=image_input,
outputs=[caption_output, token_output],
show_progress=True,
)
gr.Examples(
examples=[
["./examples/1909.png"],
["./examples/44687.jpeg"],
["./examples/natural.png"],
],
inputs=image_input,
outputs=[caption_output, token_output],
fn=generate_caption,
cache_examples=True,
label="πŸ“Έ Example Images"
)
gr.Markdown("### Citation")
gr.Markdown("If you find this project useful, please kindly cite:")
citation_text = """@article{xing2025caprl,
title={{CapRL}: Stimulating Dense Image Caption Capabilities via Reinforcement Learning},
author={Xing, Long and Dong, Xiaoyi and Zang, Yuhang and Cao, Yuhang and Liang, Jianze and Huang, Qidong and Wang, Jiaqi and Wu, Feng and Lin, Dahua},
journal={arXiv preprint arXiv:2509.22647},
year={2025}
}"""
gr.Code(value=citation_text, language="markdown", label="BibTeX Citation")
demo.launch()