File size: 9,155 Bytes
e82864c 8fc00ee e82864c 0c1f362 0474d38 e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e60c15e 8fc00ee a2b6370 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 7a76102 8fc00ee 7a76102 8fc00ee 7a76102 8fc00ee 7a76102 8fc00ee e82864c 8fc00ee e82864c 8fc00ee e82864c 8fc00ee |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 |
###############################################################
# conversation_core.py — Agentic Partner Core
###############################################################
import io
import re
from dataclasses import dataclass
from typing import List, Optional, Tuple
import numpy as np
from pydub import AudioSegment
import torch
from gtts import gTTS
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
pipeline,
)
from .config import get_user_dir
################################################################
# MODEL CONSTANTS
################################################################
QWEN_MODEL_NAME = "Qwen/Qwen2.5-1.5B-Instruct"
# CEFR control hints
CONTROL_PROMPTS = {
"A1": "Use extremely short, simple sentences and very basic vocabulary.",
"A2": "Use simple sentences and common everyday vocabulary.",
"B1": "Use moderately complex sentences and conversational vocabulary.",
"B2": "Use natural, fluent sentences with richer vocabulary.",
"C1": "Use complex, advanced sentences with nuanced expressions.",
"C2": "Use highly sophisticated, near-native language and style.",
}
# spoken language → TTS language
GTTS_LANG = {
"english": "en",
"spanish": "es",
"german": "de",
"russian": "ru",
"japanese": "ja",
"chinese": "zh-cn",
"korean": "ko",
"french": "fr",
"italian": "it",
}
################################################################
# GLOBAL MODELS
################################################################
_QWEN_TOKENIZER = None
_QWEN_MODEL = None
_WHISPER_PIPE = None
def load_partner_lm():
"""Load Qwen conversational model once."""
global _QWEN_TOKENIZER, _QWEN_MODEL
if _QWEN_MODEL is not None:
return _QWEN_TOKENIZER, _QWEN_MODEL
print("[conversation_core] loading:", QWEN_MODEL_NAME)
tok = AutoTokenizer.from_pretrained(QWEN_MODEL_NAME, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(
QWEN_MODEL_NAME,
torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
device_map="auto",
trust_remote_code=True,
)
_QWEN_TOKENIZER = tok
_QWEN_MODEL = model
return tok, model
def load_whisper_pipe():
"""Load Whisper ASR pipeline once."""
global _WHISPER_PIPE
if _WHISPER_PIPE is not None:
return _WHISPER_PIPE
print("[conversation_core] loading Whisper pipeline…")
_WHISPER_PIPE = pipeline(
"automatic-speech-recognition",
model="openai/whisper-small",
device="cpu",
)
return _WHISPER_PIPE
################################################################
# DATA STRUCTURE
################################################################
@dataclass
class ConversationTurn:
role: str
text: str
################################################################
# CLEANING LM OUTPUT
################################################################
def clean_assistant_reply(text: str) -> str:
"""Remove meta junk, labels, identity statements."""
if not text:
return ""
# Remove "assistant:" echo
text = re.sub(r"(?i)\bassistant\s*:\s*", "", text)
text = re.sub(r"(?i)\buser\s*:\s*", "", text)
# Remove bullet lists (not desired in conversation)
text = re.sub(r"(?m)^\s*[-•*]\s+.*$", "", text)
text = re.sub(r"(?m)^\s*\d+\.\s+.*$", "", text)
# Remove identity claims
identity_patterns = [
r"(?i)i am an ai.*",
r"(?i)i am a large language model.*",
r"(?i)i was created.*",
r"(?i)my name is .*",
]
for p in identity_patterns:
text = re.sub(p, "", text)
text = re.sub(r"\s{2,}", " ", text)
return text.strip()
################################################################
# CONVERSATION MANAGER
################################################################
class ConversationManager:
def __init__(
self,
target_language="german",
native_language="english",
cefr_level="B1",
topic="general conversation",
):
self.target_language = target_language.lower()
self.native_language = native_language.lower()
self.cefr_level = cefr_level.upper()
self.topic = topic
self.history: List[ConversationTurn] = []
load_partner_lm()
load_whisper_pipe()
################################################################
# SYSTEM PROMPT
################################################################
def _build_system_prompt(self):
base = (
f"You are a friendly conversation partner speaking {self.target_language}. "
f"Reply ONLY in {self.target_language}. "
f"Adapt your language to CEFR level {self.cefr_level}. "
f"{CONTROL_PROMPTS.get(self.cefr_level, '')} "
f"Topic of conversation: {self.topic}. "
"Give 1–3 short natural sentences and ALWAYS end with 1 follow-up question. "
"Never mention AI, assistants, grammar explanations, or meta commentary."
)
return base
################################################################
# GENERATION
################################################################
def _generate_lm(self, user_text: str) -> str:
tok, model = load_partner_lm()
messages = [
{"role": "system", "content": self._build_system_prompt()},
{"role": "user", "content": user_text},
]
prompt = tok.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
enc = tok(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
out = model.generate(
**enc,
max_new_tokens=160,
temperature=0.8,
top_p=0.95,
repetition_penalty=1.15,
do_sample=True,
pad_token_id=tok.eos_token_id,
)
raw = tok.decode(out[0], skip_special_tokens=True)
# Remove echo
cleaned = clean_assistant_reply(raw)
return cleaned
################################################################
# PUBLIC REPLY API
################################################################
def reply(self, user_text: str, input_lang="german"):
self.history.append(ConversationTurn("user", user_text))
assistant_text = self._generate_lm(user_text)
self.history.append(ConversationTurn("assistant", assistant_text))
explanation = self._generate_explanation(assistant_text)
audio_bytes = self.text_to_speech(assistant_text)
return {
"reply_text": assistant_text,
"explanation": explanation,
"audio": audio_bytes,
}
################################################################
# SHORT EXPLANATION
################################################################
def _generate_explanation(self, assistant_text: str) -> str:
tok, model = load_partner_lm()
prompt = (
f"Rewrite the meaning of this {self.target_language} sentence "
f"in ONE short {self.native_language} sentence:\n{assistant_text}"
)
enc = tok(prompt, return_tensors="pt").to(model.device)
with torch.no_grad():
out = model.generate(
**enc,
max_new_tokens=40,
temperature=0.6,
top_p=0.9,
pad_token_id=tok.eos_token_id,
)
decoded = tok.decode(out[0], skip_special_tokens=True)
cleaned = decoded.replace(prompt, "").strip()
# keep only the first sentence
parts = re.split(r"(?<=[.!?])\s+", cleaned)
return parts[0].strip()
################################################################
# TRANSCRIPTION — SINGLE VALID VERSION
################################################################
def transcribe(self, audio_segment, spoken_lang=None):
"""Transcribe using Transformers Whisper."""
pipe = load_whisper_pipe()
audio = np.array(audio_segment.get_array_of_samples()).astype("float32")
audio = audio / max(np.max(np.abs(audio)), 1e-6)
result = pipe(audio)
text = result.get("text", "").strip()
return text, spoken_lang or "unknown", 1.0
################################################################
# TTS — gTTS
################################################################
def text_to_speech(self, text: str) -> Optional[bytes]:
if not text:
return None
try:
lang = GTTS_LANG.get(self.target_language, "en")
tts = gTTS(text=text, lang=lang)
buf = io.BytesIO()
tts.write_to_fp(buf)
return buf.getvalue()
except Exception:
return None
################################################################
# END OF FILE
################################################################
|