Spaces:
Runtime error
Runtime error
File size: 9,016 Bytes
de353d4 dbcd6fd e0da60b dbcd6fd 3ce50bb dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd d3964a9 dbcd6fd bd53067 dbcd6fd ca6ba1f dbcd6fd f9c3442 dbcd6fd d3964a9 dbcd6fd e0da60b 6c507a8 dbcd6fd cd456e7 dbcd6fd f9c3442 dbcd6fd bd53067 cd456e7 dbcd6fd 228c83f 061bca0 228c83f dbcd6fd e0da60b dbcd6fd cd456e7 dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd e0da60b dbcd6fd 1643a94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 |
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from aura_sr import AuraSR
from gradio_imageslider import ImageSlider
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- # Device and CUDA Setup Check ---
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Main Model Initialization ---
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# --- Load All Adapters ---
pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="cleanser")
pipe.load_lora_weights("prithivMLmods/Photo-Restore-i2i", weight_name="Photo-Restore-i2i.safetensors", adapter_name="restorer")
pipe.load_lora_weights("prithivMLmods/Polaroid-Warm-i2i", weight_name="Polaroid-Warm-i2i.safetensors", adapter_name="polaroid")
pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil")
# --- Upscaler Model Initialization ---
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
@spaces.GPU
def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
"""
Perform image editing and optional upscaling, returning a pair for the ImageSlider.
Returns:
tuple: A 3-tuple containing:
- (PIL.Image.Image, PIL.Image.Image): A tuple of the (original, generated) images for the slider.
- int: The seed used for generation.
- gr.update: A Gradio update to make the reuse button visible.
"""
if not input_image:
raise gr.Error("Please upload an image for editing.")
if lora_adapter == "PhotoCleanser":
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
elif lora_adapter == "PhotoRestorer":
pipe.set_adapters(["restorer"], adapter_weights=[1.0])
elif lora_adapter == "PolaroidWarm":
pipe.set_adapters(["polaroid"], adapter_weights=[1.0])
elif lora_adapter == "MonochromePencil":
pipe.set_adapters(["pencil"], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
original_image = input_image.copy().convert("RGB")
image = pipe(
image=original_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = original_image.size[0],
height = original_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
if upscale_image:
progress(0.8, desc="Upscaling image...")
image = aura_sr.upscale_4x(image)
return (original_image, image), seed, gr.Button(visible=True)
@spaces.GPU
def infer_example(input_image, prompt, lora_adapter):
"""
Wrapper function for gr.Examples to call the main infer logic for the slider.
"""
(original_image, generated_image), seed, _ = infer(input_image, prompt, lora_adapter, upscale_image=False)
return (original_image, generated_image), seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# **[Photo-Mate-i2i](https://huggingface.co/collections/prithivMLmods/i2i-kontext-exp-68ce573b5c0623476b636ec7)**
Image manipulation with FLUX.1 Kontext adapters""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image [PIL]", type="pil", height="300")
with gr.Row():
prompt = gr.Text(
label="Edit Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", elem_classes="submit-btn", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
with gr.Column():
# Replace the single image result with the ImageSlider
output_slider = ImageSlider(label="Before / After", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Chosen LoRA",
choices=["PhotoCleanser", "PhotoRestorer", "PolaroidWarm", "MonochromePencil"],
value="PhotoCleanser"
)
#AuraSR Upscale
with gr.Row():
upscale_checkbox = gr.Checkbox(label="Upscale the final image", value=False)
gr.Examples(
examples=[
["photocleanser/2.png", "[photo content], remove the cat from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["photocleanser/1.png", "[photo content], remove the football from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["polaroid/1.png", "[photo content], in the style of a vintage Polaroid, with warm, faded tones, and a white border.", "PolaroidWarm"],
["pencil/1.png", "[photo content], replicate the image as a pencil illustration, black and white, with sketch-like detailing.", "MonochromePencil"],
],
inputs=[input_image, prompt, lora_adapter],
# The output now targets the ImageSlider component
outputs=[output_slider, seed],
fn=infer_example,
cache_examples=False,
label="Examples"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps],
# The output now targets the ImageSlider component
outputs=[output_slider, seed, reuse_button]
)
# Update the reuse function to handle the ImageSlider output
reuse_button.click(
# The slider outputs a tuple of images; we want the second one (the generated result)
fn=lambda images: images[1] if isinstance(images, (list, tuple)) and len(images) > 1 else images,
inputs=[output_slider],
outputs=[input_image]
)
demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |