Spaces:
Runtime error
Runtime error
| import os | |
| import gradio as gr | |
| import numpy as np | |
| import spaces | |
| import torch | |
| import random | |
| from PIL import Image | |
| from diffusers import FluxKontextPipeline | |
| from diffusers.utils import load_image | |
| from huggingface_hub import hf_hub_download | |
| from aura_sr import AuraSR | |
| from gradio_imageslider import ImageSlider | |
| device = torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
| # --- # Device and CUDA Setup Check --- | |
| print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES")) | |
| print("torch.__version__ =", torch.__version__) | |
| print("torch.version.cuda =", torch.version.cuda) | |
| print("cuda available:", torch.cuda.is_available()) | |
| print("cuda device count:", torch.cuda.device_count()) | |
| if torch.cuda.is_available(): | |
| print("current device:", torch.cuda.current_device()) | |
| print("device name:", torch.cuda.get_device_name(torch.cuda.current_device())) | |
| print("Using device:", device) | |
| # --- Main Model Initialization --- | |
| MAX_SEED = np.iinfo(np.int32).max | |
| pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda") | |
| # --- Load All Adapters --- | |
| pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="cleanser") | |
| pipe.load_lora_weights("prithivMLmods/Photo-Restore-i2i", weight_name="Photo-Restore-i2i.safetensors", adapter_name="restorer") | |
| pipe.load_lora_weights("prithivMLmods/Polaroid-Warm-i2i", weight_name="Polaroid-Warm-i2i.safetensors", adapter_name="polaroid") | |
| pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil") | |
| # Add the new LZO adapter | |
| pipe.load_lora_weights("prithivMLmods/LZO-1-Preview", weight_name="LZO-1-Preview.safetensors", adapter_name="lzo") | |
| # --- Upscaler Model Initialization --- | |
| aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2") | |
| def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)): | |
| """ | |
| Perform image editing and optional upscaling, returning a pair for the ImageSlider. | |
| Returns: | |
| tuple: A 3-tuple containing: | |
| - (PIL.Image.Image, PIL.Image.Image): A tuple of the (original, generated) images for the slider. | |
| - int: The seed used for generation. | |
| - gr.update: A Gradio update to make the reuse button visible. | |
| """ | |
| if not input_image: | |
| raise gr.Error("Please upload an image for editing.") | |
| if lora_adapter == "PhotoCleanser": | |
| pipe.set_adapters(["cleanser"], adapter_weights=[1.0]) | |
| elif lora_adapter == "PhotoRestorer": | |
| pipe.set_adapters(["restorer"], adapter_weights=[1.0]) | |
| elif lora_adapter == "PolaroidWarm": | |
| pipe.set_adapters(["polaroid"], adapter_weights=[1.0]) | |
| elif lora_adapter == "MonochromePencil": | |
| pipe.set_adapters(["pencil"], adapter_weights=[1.0]) | |
| # Add the new LZO adapter condition | |
| elif lora_adapter == "LZO-Zoom": | |
| pipe.set_adapters(["lzo"], adapter_weights=[1.0]) | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| original_image = input_image.copy().convert("RGB") | |
| image = pipe( | |
| image=original_image, | |
| prompt=prompt, | |
| guidance_scale=guidance_scale, | |
| width = original_image.size[0], | |
| height = original_image.size[1], | |
| num_inference_steps=steps, | |
| generator=torch.Generator().manual_seed(seed), | |
| ).images[0] | |
| if upscale_image: | |
| progress(0.8, desc="Upscaling image...") | |
| image = aura_sr.upscale_4x(image) | |
| return (original_image, image), seed, gr.Button(visible=True) | |
| def infer_example(input_image, prompt, lora_adapter): | |
| """ | |
| Wrapper function for gr.Examples to call the main infer logic for the slider. | |
| """ | |
| (original_image, generated_image), seed, _ = infer(input_image, prompt, lora_adapter, upscale_image=False) | |
| return (original_image, generated_image), seed | |
| css=""" | |
| #col-container { | |
| margin: 0 auto; | |
| max-width: 960px; | |
| } | |
| .submit-btn { | |
| background-color: #2980b9 !important; | |
| color: white !important; | |
| } | |
| .submit-btn:hover { | |
| background-color: #3498db !important; | |
| } | |
| """ | |
| with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo: | |
| with gr.Column(elem_id="col-container"): | |
| gr.Markdown(f"""# **[Photo-Mate-i2i](https://huggingface.co/collections/prithivMLmods/i2i-kontext-exp-68ce573b5c0623476b636ec7)** | |
| Image manipulation with FLUX.1 Kontext adapters. [How to Use](https://huggingface.co/spaces/prithivMLmods/Photo-Mate-i2i/discussions/2)""") | |
| with gr.Row(): | |
| with gr.Column(): | |
| input_image = gr.Image(label="Image [PIL]", type="pil", height="300") | |
| with gr.Row(): | |
| prompt = gr.Text( | |
| label="Edit Prompt", | |
| show_label=False, | |
| max_lines=1, | |
| placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')", | |
| container=False, | |
| ) | |
| run_button = gr.Button("Run", elem_classes="submit-btn", scale=0) | |
| with gr.Accordion("Advanced Settings", open=False): | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| guidance_scale = gr.Slider( | |
| label="Guidance Scale", | |
| minimum=1, | |
| maximum=10, | |
| step=0.1, | |
| value=2.5, | |
| ) | |
| steps = gr.Slider( | |
| label="Steps", | |
| minimum=1, | |
| maximum=30, | |
| value=28, | |
| step=1 | |
| ) | |
| with gr.Column(): | |
| # Replace the single image result with the ImageSlider | |
| output_slider = ImageSlider(label="Before / After", show_label=False, interactive=False) | |
| reuse_button = gr.Button("Reuse this image", visible=False) | |
| with gr.Row(): | |
| lora_adapter = gr.Dropdown( | |
| label="Chosen LoRA", | |
| choices=["PhotoCleanser", "PhotoRestorer", "PolaroidWarm", "MonochromePencil", "LZO-Zoom"], | |
| value="PhotoCleanser" | |
| ) | |
| #AuraSR Upscale | |
| with gr.Row(): | |
| upscale_checkbox = gr.Checkbox(label="Upscale the final image", value=False) | |
| gr.Examples( | |
| examples=[ | |
| ["photocleanser/2.png", "[photo content], remove the cat from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"], | |
| ["photocleanser/1.png", "[photo content], remove the football from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"], | |
| ["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"], | |
| # Add the new LZO example | |
| ["lzo/1.jpg", "[photo content], zoom in on the specified [face close-up], enhancing resolution and detail while preserving sharpness, realism, and original context. Maintain natural proportions and background continuity around the zoomed area.", "LZO-Zoom"], | |
| ["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"], | |
| ["polaroid/1.png", "[photo content], in the style of a vintage Polaroid, with warm, faded tones, and a white border.", "PolaroidWarm"], | |
| ["pencil/1.png", "[photo content], replicate the image as a pencil illustration, black and white, with sketch-like detailing.", "MonochromePencil"], | |
| ], | |
| inputs=[input_image, prompt, lora_adapter], | |
| # The output now targets the ImageSlider component | |
| outputs=[output_slider, seed], | |
| fn=infer_example, | |
| cache_examples="lazy", | |
| label="Examples" | |
| ) | |
| gr.on( | |
| triggers=[run_button.click, prompt.submit], | |
| fn=infer, | |
| inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps], | |
| # The output now targets the ImageSlider component | |
| outputs=[output_slider, seed, reuse_button] | |
| ) | |
| # Update the reuse function to handle the ImageSlider output | |
| reuse_button.click( | |
| # The slider outputs a tuple of images; we want the second one (the generated result) | |
| fn=lambda images: images[1] if isinstance(images, (list, tuple)) and len(images) > 1 else images, | |
| inputs=[output_slider], | |
| outputs=[input_image] | |
| ) | |
| demo.launch(mcp_server=True, ssr_mode=False, show_error=True) |