Photo-Mate-i2i / app.py
prithivMLmods's picture
Update app.py
55a0951 verified
import os
import gradio as gr
import numpy as np
import spaces
import torch
import random
from PIL import Image
from diffusers import FluxKontextPipeline
from diffusers.utils import load_image
from huggingface_hub import hf_hub_download
from aura_sr import AuraSR
from gradio_imageslider import ImageSlider
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# --- # Device and CUDA Setup Check ---
print("CUDA_VISIBLE_DEVICES=", os.environ.get("CUDA_VISIBLE_DEVICES"))
print("torch.__version__ =", torch.__version__)
print("torch.version.cuda =", torch.version.cuda)
print("cuda available:", torch.cuda.is_available())
print("cuda device count:", torch.cuda.device_count())
if torch.cuda.is_available():
print("current device:", torch.cuda.current_device())
print("device name:", torch.cuda.get_device_name(torch.cuda.current_device()))
print("Using device:", device)
# --- Main Model Initialization ---
MAX_SEED = np.iinfo(np.int32).max
pipe = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev", torch_dtype=torch.bfloat16).to("cuda")
# --- Load All Adapters ---
pipe.load_lora_weights("prithivMLmods/PhotoCleanser-i2i", weight_name="PhotoCleanser-i2i.safetensors", adapter_name="cleanser")
pipe.load_lora_weights("prithivMLmods/Photo-Restore-i2i", weight_name="Photo-Restore-i2i.safetensors", adapter_name="restorer")
pipe.load_lora_weights("prithivMLmods/Polaroid-Warm-i2i", weight_name="Polaroid-Warm-i2i.safetensors", adapter_name="polaroid")
pipe.load_lora_weights("prithivMLmods/Monochrome-Pencil", weight_name="Monochrome-Pencil-i2i.safetensors", adapter_name="pencil")
# Add the new LZO adapter
pipe.load_lora_weights("prithivMLmods/LZO-1-Preview", weight_name="LZO-1-Preview.safetensors", adapter_name="lzo")
# --- Upscaler Model Initialization ---
aura_sr = AuraSR.from_pretrained("fal/AuraSR-v2")
@spaces.GPU
def infer(input_image, prompt, lora_adapter, upscale_image, seed=42, randomize_seed=False, guidance_scale=2.5, steps=28, progress=gr.Progress(track_tqdm=True)):
"""
Perform image editing and optional upscaling, returning a pair for the ImageSlider.
Returns:
tuple: A 3-tuple containing:
- (PIL.Image.Image, PIL.Image.Image): A tuple of the (original, generated) images for the slider.
- int: The seed used for generation.
- gr.update: A Gradio update to make the reuse button visible.
"""
if not input_image:
raise gr.Error("Please upload an image for editing.")
if lora_adapter == "PhotoCleanser":
pipe.set_adapters(["cleanser"], adapter_weights=[1.0])
elif lora_adapter == "PhotoRestorer":
pipe.set_adapters(["restorer"], adapter_weights=[1.0])
elif lora_adapter == "PolaroidWarm":
pipe.set_adapters(["polaroid"], adapter_weights=[1.0])
elif lora_adapter == "MonochromePencil":
pipe.set_adapters(["pencil"], adapter_weights=[1.0])
# Add the new LZO adapter condition
elif lora_adapter == "LZO-Zoom":
pipe.set_adapters(["lzo"], adapter_weights=[1.0])
if randomize_seed:
seed = random.randint(0, MAX_SEED)
original_image = input_image.copy().convert("RGB")
image = pipe(
image=original_image,
prompt=prompt,
guidance_scale=guidance_scale,
width = original_image.size[0],
height = original_image.size[1],
num_inference_steps=steps,
generator=torch.Generator().manual_seed(seed),
).images[0]
if upscale_image:
progress(0.8, desc="Upscaling image...")
image = aura_sr.upscale_4x(image)
return (original_image, image), seed, gr.Button(visible=True)
@spaces.GPU
def infer_example(input_image, prompt, lora_adapter):
"""
Wrapper function for gr.Examples to call the main infer logic for the slider.
"""
(original_image, generated_image), seed, _ = infer(input_image, prompt, lora_adapter, upscale_image=False)
return (original_image, generated_image), seed
css="""
#col-container {
margin: 0 auto;
max-width: 960px;
}
.submit-btn {
background-color: #2980b9 !important;
color: white !important;
}
.submit-btn:hover {
background-color: #3498db !important;
}
"""
with gr.Blocks(css=css, theme="bethecloud/storj_theme") as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown(f"""# **[Photo-Mate-i2i](https://huggingface.co/collections/prithivMLmods/i2i-kontext-exp-68ce573b5c0623476b636ec7)**
Image manipulation with FLUX.1 Kontext adapters. [How to Use](https://huggingface.co/spaces/prithivMLmods/Photo-Mate-i2i/discussions/2)""")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Image [PIL]", type="pil", height="300")
with gr.Row():
prompt = gr.Text(
label="Edit Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt for editing (e.g., 'Remove glasses', 'Add a hat')",
container=False,
)
run_button = gr.Button("Run", elem_classes="submit-btn", scale=0)
with gr.Accordion("Advanced Settings", open=False):
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
guidance_scale = gr.Slider(
label="Guidance Scale",
minimum=1,
maximum=10,
step=0.1,
value=2.5,
)
steps = gr.Slider(
label="Steps",
minimum=1,
maximum=30,
value=28,
step=1
)
with gr.Column():
# Replace the single image result with the ImageSlider
output_slider = ImageSlider(label="Before / After", show_label=False, interactive=False)
reuse_button = gr.Button("Reuse this image", visible=False)
with gr.Row():
lora_adapter = gr.Dropdown(
label="Chosen LoRA",
choices=["PhotoCleanser", "PhotoRestorer", "PolaroidWarm", "MonochromePencil", "LZO-Zoom"],
value="PhotoCleanser"
)
#AuraSR Upscale
with gr.Row():
upscale_checkbox = gr.Checkbox(label="Upscale the final image", value=False)
gr.Examples(
examples=[
["photocleanser/2.png", "[photo content], remove the cat from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["photocleanser/1.png", "[photo content], remove the football from the image while preserving the background and remaining elements, maintaining realism and original details.", "PhotoCleanser"],
["photorestore/1.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
# Add the new LZO example
["lzo/1.jpg", "[photo content], zoom in on the specified [face close-up], enhancing resolution and detail while preserving sharpness, realism, and original context. Maintain natural proportions and background continuity around the zoomed area.", "LZO-Zoom"],
["photorestore/2.png", "[photo content], restore and enhance the image by repairing any damage, scratches, or fading. Colorize the photo naturally while preserving authentic textures and details, maintaining a realistic and historically accurate look.", "PhotoRestorer"],
["polaroid/1.png", "[photo content], in the style of a vintage Polaroid, with warm, faded tones, and a white border.", "PolaroidWarm"],
["pencil/1.png", "[photo content], replicate the image as a pencil illustration, black and white, with sketch-like detailing.", "MonochromePencil"],
],
inputs=[input_image, prompt, lora_adapter],
# The output now targets the ImageSlider component
outputs=[output_slider, seed],
fn=infer_example,
cache_examples="lazy",
label="Examples"
)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[input_image, prompt, lora_adapter, upscale_checkbox, seed, randomize_seed, guidance_scale, steps],
# The output now targets the ImageSlider component
outputs=[output_slider, seed, reuse_button]
)
# Update the reuse function to handle the ImageSlider output
reuse_button.click(
# The slider outputs a tuple of images; we want the second one (the generated result)
fn=lambda images: images[1] if isinstance(images, (list, tuple)) and len(images) > 1 else images,
inputs=[output_slider],
outputs=[input_image]
)
demo.launch(mcp_server=True, ssr_mode=False, show_error=True)