readme: add initial version of model card
Browse filesHey,
this PR adds the initial version of model card.
README.md
ADDED
|
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language: de
|
| 3 |
+
license: mit
|
| 4 |
+
tags:
|
| 5 |
+
- flair
|
| 6 |
+
- token-classification
|
| 7 |
+
- sequence-tagger-model
|
| 8 |
+
base_model: deepset/gbert-base
|
| 9 |
+
widget:
|
| 10 |
+
- text: PASt ( KvD ) - Polizeipräsidium Westhessen [ Newsroom ] Wiesbaden ( ots )
|
| 11 |
+
- Am Sonntag , den 27.01.2019 führte die Autobahnpolizei Wiesbaden in Zusammenarbeit
|
| 12 |
+
mit der Präsidialwache in der Zeit von 11:00 - 16:00 Uhr eine Geschwindigkeitsmessung
|
| 13 |
+
in der Baustelle der A66 am Wiesbadener Kreuz durch .
|
| 14 |
+
---
|
| 15 |
+
|
| 16 |
+
# Fine-tuned Flair Model on German MobIE Dataset with AutoTrain
|
| 17 |
+
|
| 18 |
+
This Flair model was fine-tuned on the
|
| 19 |
+
[German MobIE](https://aclanthology.org/2021.konvens-1.22/)
|
| 20 |
+
NER Dataset using GBERT Base as backbone LM and the 🚀 [AutoTrain](https://github.com/huggingface/autotrain-advanced)
|
| 21 |
+
library.
|
| 22 |
+
|
| 23 |
+
## Dataset
|
| 24 |
+
|
| 25 |
+
The [German MobIE](https://github.com/DFKI-NLP/MobIE) dataset is a German-language dataset, which is human-annotated
|
| 26 |
+
with 20 coarse- and fine-grained entity types and entity linking information for geographically linkable entities. The
|
| 27 |
+
dataset consists of 3,232 social media texts and traffic reports with 91K tokens, and contains 20.5K annotated
|
| 28 |
+
entities, 13.1K of which are linked to a knowledge base.
|
| 29 |
+
|
| 30 |
+
The following named entities are annotated:
|
| 31 |
+
|
| 32 |
+
* `location-stop`
|
| 33 |
+
* `trigger`
|
| 34 |
+
* `organization-company`
|
| 35 |
+
* `location-city`
|
| 36 |
+
* `location`
|
| 37 |
+
* `event-cause`
|
| 38 |
+
* `location-street`
|
| 39 |
+
* `time`
|
| 40 |
+
* `date`
|
| 41 |
+
* `number`
|
| 42 |
+
* `duration`
|
| 43 |
+
* `organization`
|
| 44 |
+
* `person`
|
| 45 |
+
* `set`
|
| 46 |
+
* `distance`
|
| 47 |
+
* `disaster-type`
|
| 48 |
+
* `money`
|
| 49 |
+
* `org-position`
|
| 50 |
+
* `percent`
|
| 51 |
+
|
| 52 |
+
## Fine-Tuning
|
| 53 |
+
|
| 54 |
+
The latest [Flair version](https://github.com/flairNLP/flair/tree/42ea3f6854eba04387c38045f160c18bdaac07dc) is used for
|
| 55 |
+
fine-tuning. Additionally, the model is trained with the
|
| 56 |
+
[FLERT (Schweter and Akbik (2020)](https://arxiv.org/abs/2011.06993) approach, because the MobIE dataset thankfully
|
| 57 |
+
comes with document boundary information marker.
|
| 58 |
+
|
| 59 |
+
A hyper-parameter search over the following parameters with 5 different seeds per configuration is performed:
|
| 60 |
+
|
| 61 |
+
* Batch Sizes: [`16`]
|
| 62 |
+
* Learning Rates: [`5e-05`, `3e-05`]
|
| 63 |
+
|
| 64 |
+
All models are trained with the awesome [AutoTrain Advanced](https://github.com/huggingface/autotrain-advanced) from
|
| 65 |
+
Hugging Face. More details can be found in this [repository](https://github.com/stefan-it/autotrain-flair-mobie).
|
| 66 |
+
|
| 67 |
+
## Results
|
| 68 |
+
|
| 69 |
+
A hyper-parameter search with 5 different seeds per configuration is performed and micro F1-score on development set
|
| 70 |
+
is reported:
|
| 71 |
+
|
| 72 |
+
| Configuration | Seed 1 | Seed 2 | Seed 3 | Seed 4 | Seed 5 | Average |
|
| 73 |
+
|--------------------|-------------|-------------|-----------------|-------------|--------------|-----------------|
|
| 74 |
+
| `bs16-e10-lr5e-05` | [0.8446][1] | [0.8495][2] | [0.8455][3] | [0.8419][4] | [0.8476][5] | 0.8458 ± 0.0029 |
|
| 75 |
+
| `bs16-e10-lr3e-05` | [0.8392][6] | [0.8445][7] | [**0.8495**][8] | [0.8381][9] | [0.8449][10] | 0.8432 ± 0.0046 |
|
| 76 |
+
|
| 77 |
+
[1]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-1
|
| 78 |
+
[2]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-2
|
| 79 |
+
[3]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-3
|
| 80 |
+
[4]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-4
|
| 81 |
+
[5]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr5e-05-5
|
| 82 |
+
[6]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-1
|
| 83 |
+
[7]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-2
|
| 84 |
+
[8]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-3
|
| 85 |
+
[9]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-4
|
| 86 |
+
[10]: https://hf.co/stefan-it/autotrain-flair-mobie-gbert_base-bs16-e10-lr3e-05-5
|
| 87 |
+
|
| 88 |
+
The result in bold shows the performance of this model.
|
| 89 |
+
|
| 90 |
+
Additionally, the Flair [training log](training.log) and [TensorBoard logs](tensorboard) are also uploaded to the model
|
| 91 |
+
hub.
|