Xuandong nielsr HF Staff commited on
Commit
e8c2a66
·
verified ·
1 Parent(s): 76cd751

Improve model card: Add library, GitHub link, paper details, and usage example (#1)

Browse files

- Improve model card: Add library, GitHub link, paper details, and usage example (5397964d05a26cde535a4f93a1b69f25d35ec954)


Co-authored-by: Niels Rogge <[email protected]>

Files changed (1) hide show
  1. README.md +96 -9
README.md CHANGED
@@ -1,20 +1,108 @@
1
  ---
2
  base_model: Qwen/Qwen2.5-1.5B
3
- license: apache-2.0
4
  datasets:
5
- - math
 
 
 
6
  metrics:
7
- - accuracy
8
  pipeline_tag: text-generation
9
- language:
10
- - en
11
  ---
12
 
13
  # Qwen2.5-1.5B-GRPO-MATH-1EPOCH
14
 
15
- **Description:**
 
 
 
 
 
 
 
 
 
16
 
17
- A GRPO-fine-tuned version of Qwen2.5-1.5B trained on the MATH dataset.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
  ---
20
 
@@ -34,5 +122,4 @@ A GRPO-fine-tuned version of Qwen2.5-1.5B trained on the MATH dataset.
34
  journal = {arXiv preprint arXiv:2402.03300},
35
  year = {2024},
36
  }
37
- ```
38
-
 
1
  ---
2
  base_model: Qwen/Qwen2.5-1.5B
 
3
  datasets:
4
+ - math
5
+ language:
6
+ - en
7
+ license: apache-2.0
8
  metrics:
9
+ - accuracy
10
  pipeline_tag: text-generation
11
+ library_name: transformers
 
12
  ---
13
 
14
  # Qwen2.5-1.5B-GRPO-MATH-1EPOCH
15
 
16
+ This model is a GRPO-fine-tuned version of Qwen2.5-1.5B trained on the MATH dataset, as presented in the paper [**Learning to Reason without External Rewards**](https://huggingface.co/papers/2505.19590).
17
+
18
+ **Abstract from the paper:**
19
+ Training large language models (LLMs) for complex reasoning via Reinforcement Learning with Verifiable Rewards (RLVR) is effective but limited by reliance on costly, domain-specific supervision. We explore Reinforcement Learning from Internal Feedback (RLIF), a framework that enables LLMs to learn from intrinsic signals without external rewards or labeled data. We propose Intuitor, an RLIF method that uses a model's own confidence, termed self-certainty, as its sole reward signal. Intuitor replaces external rewards in Group Relative Policy Optimization (GRPO) with self-certainty scores, enabling fully unsupervised learning. Experiments demonstrate that Intuitor matches GRPO's performance on mathematical benchmarks while achieving superior generalization to out-of-domain tasks like code generation, without requiring gold solutions or test cases. Our findings show that intrinsic model signals can drive effective learning across domains, offering a scalable alternative to RLVR for autonomous AI systems where verifiable rewards are unavailable.
20
+
21
+ ---
22
+
23
+ ## Overview of Intuitor and RLIF
24
+
25
+ **Intuitor** is a reinforcement learning method that fine-tunes large language models (LLMs) using *self-certainty*—the model’s own internal confidence—as the sole reward. It is built on a novel paradigm called **Reinforcement Learning from Internal Feedback (RLIF)**.
26
 
27
+ <div align="center">
28
+ <img src="https://raw.githubusercontent.com/sunblaze-ucb/Intuitor/main/figs/rlif.png" alt="RLIF Overview" width="700">
29
+ <br>
30
+ <em>Overview of Reinforcement Learning from Internal Feedback (RLIF)</em>
31
+ </div>
32
+
33
+ ### 🧭 What is RLIF?
34
+
35
+ **Reinforcement Learning from Internal Feedback (RLIF)** is a training framework where language models learn *without any external rewards, gold labels, or verifiers*. Instead, models improve by optimizing *intrinsic signals*—such as confidence in their own answers—generated entirely from within. RLIF enables scalable and domain-agnostic fine-tuning of LLMs in settings where human feedback or verifiable supervision is expensive or unavailable.
36
+
37
+ Intuitor instantiates RLIF by using **self-certainty**—a model's confidence measured via KL divergence to uniform—as an intrinsic reward in the GRPO policy optimization algorithm.
38
+
39
+ <div align="center">
40
+ <img src="https://raw.githubusercontent.com/sunblaze-ucb/Intuitor/main/figs/intuitor.png" alt="Intuitor Framework" width="700">
41
+ <br>
42
+ <em>The Intuitor Framework</em>
43
+ </div>
44
+
45
+ ---
46
+
47
+ ## Code and Usage
48
+
49
+ The official implementation and detailed usage instructions are available on the [**Intuitor GitHub repository**](https://github.com/sunblaze-ucb/Intuitor).
50
+
51
+ ### Sample Usage
52
+
53
+ You can load and use this model directly with the Hugging Face `transformers` library:
54
+
55
+ ```python
56
+ import torch
57
+ from transformers import AutoModelForCausalLM, AutoTokenizer
58
+
59
+ model_id = "sunblaze-ucb/Qwen2.5-1.5B-GRPO-MATH-1EPOCH"
60
+
61
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
62
+ model = AutoModelForCausalLM.from_pretrained(
63
+ model_id,
64
+ torch_dtype=torch.bfloat16, # or torch.float16 depending on available hardware
65
+ device_map="auto"
66
+ )
67
+
68
+ # Example prompt for a mathematical reasoning task
69
+ # The Qwen2.5 model expects a specific chat template for instruction-tuned usage.
70
+ prompt = "Question: Simplify (x^2 + 2x + 1) / (x + 1)\
71
+ Answer:"
72
+ messages = [{"role": "user", "content": prompt}]
73
+ text = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
74
+
75
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
76
+
77
+ generated_ids = model.generate(
78
+ model_inputs.input_ids,
79
+ max_new_tokens=100,
80
+ do_sample=False, # Set to True for creative outputs
81
+ temperature=0.7,
82
+ top_p=0.9,
83
+ eos_token_id=tokenizer.eos_token_id
84
+ )
85
+
86
+ decoded_output = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
87
+ print(decoded_output)
88
+ ```
89
+
90
+ ---
91
+
92
+ ## Benchmarks
93
+
94
+ Intuitor achieves:
95
+ - Comparable performance to GRPO on in-domain math reasoning tasks (GSM8K, MATH500)
96
+ - Superior generalization to code generation (LiveCodeBench, CRUXEval)
97
+ - Improved instruction following, without needing any gold labels or verifiable test suites
98
+
99
+ For detailed results, see Table 1 in the paper.
100
+
101
+ <div align="center">
102
+ <img src="https://raw.githubusercontent.com/sunblaze-ucb/Intuitor/main/figs/results.png" alt="Benchmark Results" width="700">
103
+ <br>
104
+ <em>Detailed results are available in Table 1 of the paper.</em>
105
+ </div>
106
 
107
  ---
108
 
 
122
  journal = {arXiv preprint arXiv:2402.03300},
123
  year = {2024},
124
  }
125
+ ```