Commit
·
3e86c42
1
Parent(s):
c6e5e05
general distr
Browse files
README.md
CHANGED
|
@@ -14,6 +14,8 @@ Currently implemented methods:
|
|
| 14 |
Example: `custom_pipeline.load_initial_noise_modifier(method="fixed-seed", seed=…)`
|
| 15 |
- Golden Noise for Diffusion Models: A Learning Framework (Zhou et al., https://arxiv.org/abs/2411.09502).
|
| 16 |
Example: `custom_pipeline.load_initial_noise_modifier(method="golden-noise", npnet_path=…)`
|
|
|
|
|
|
|
| 17 |
|
| 18 |
|
| 19 |
|
|
@@ -89,4 +91,22 @@ Code adapted from [Github Repo](https://github.com/xie-lab-ml/Golden-Noise-for-D
|
|
| 89 |
primaryClass={cs.LG},
|
| 90 |
url={https://arxiv.org/abs/2411.09502},
|
| 91 |
}
|
| 92 |
-
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
Example: `custom_pipeline.load_initial_noise_modifier(method="fixed-seed", seed=…)`
|
| 15 |
- Golden Noise for Diffusion Models: A Learning Framework (Zhou et al., https://arxiv.org/abs/2411.09502).
|
| 16 |
Example: `custom_pipeline.load_initial_noise_modifier(method="golden-noise", npnet_path=…)`
|
| 17 |
+
- General Normal Distribution: Sample from a user defined General Normal Distribution
|
| 18 |
+
Example: `custom_pipeline.load_initial_noise_modifier(method="general-normal-distribution", init_noise_mean=(0, -0.1, 0.2, 0), init_noise_std=(1, 1, 1, 1)])`
|
| 19 |
|
| 20 |
|
| 21 |
|
|
|
|
| 91 |
primaryClass={cs.LG},
|
| 92 |
url={https://arxiv.org/abs/2411.09502},
|
| 93 |
}
|
| 94 |
+
```
|
| 95 |
+
|
| 96 |
+
## Example 3: General Normal Distribution
|
| 97 |
+
|
| 98 |
+
The latent space of SDXL is a 4-channel tensor with interpretable semantics. Channel 1 primarily encodes luminance or overall brightness, while Channel 2 captures the cyan–red color axis, and Channel 3 represents the green–blue axis. Channel 4 encodes structure and patterns.
|
| 99 |
+
|
| 100 |
+
By manipulating the mean values of these channels—particularly those associated with color—you can bias the generation process toward specific visual tones or styles. This allows for a degree of control over the image's color palette directly in the latent space, without modifying the text prompt or conditioning vectors.
|
| 101 |
+
<div style="display: flex; justify-content: space-between; align-items: center;">
|
| 102 |
+
<div style="text-align: center; flex: 1; margin-right: 10px;">
|
| 103 |
+
<img src="examples/mountain_blue.png" alt="Blue, purple tone" style="width:100%;">
|
| 104 |
+
<p><em>(a) Biased toward blue and purple tones</em></p>
|
| 105 |
+
</div>
|
| 106 |
+
<div style="text-align: center; flex: 1; margin-left: 10px;">
|
| 107 |
+
<img src="examples/mountain_red.png" alt="Red, orange tone" style="width:100%;">
|
| 108 |
+
<p><em>(b) Biased toward red and orange tones</em></p>
|
| 109 |
+
</div>
|
| 110 |
+
</div>
|
| 111 |
+
|
| 112 |
+
<p style="text-align: center;"><strong>Figure:</strong> Controlling the latent space color distribution biases the generation toward different global color schemes.</p>
|