[Doc] Add the use of the tables in the QuickStart
#2
by
RandomTao
- opened
README.md
CHANGED
|
@@ -52,9 +52,9 @@ For now, the standalone decoder is open-sourced and fully functional without hav
|
|
| 52 |
|
| 53 |
This model is static, trained on an offline dataset. Future versions may be released to enhance its performance on specialized tasks.
|
| 54 |
|
| 55 |
-
**
|
| 56 |
|
| 57 |
-
|
| 58 |
|
| 59 |
> Note that you need `transformers>=4.37.0` to use `TableGPT2`:
|
| 60 |
> ```sh
|
|
@@ -64,33 +64,62 @@ Here provides a code snippet with apply_chat_template to show you how to load th
|
|
| 64 |
```python
|
| 65 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
model_name = "tablegpt/TableGPT2-7B"
|
| 68 |
|
| 69 |
model = AutoModelForCausalLM.from_pretrained(
|
| 70 |
-
model_name,
|
| 71 |
-
torch_dtype="auto",
|
| 72 |
-
device_map="auto"
|
| 73 |
)
|
| 74 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 75 |
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
messages = [
|
| 78 |
{"role": "system", "content": "You are a helpful assistant."},
|
| 79 |
-
{"role": "user", "content": prompt}
|
| 80 |
]
|
| 81 |
text = tokenizer.apply_chat_template(
|
| 82 |
-
messages,
|
| 83 |
-
tokenize=False,
|
| 84 |
-
add_generation_prompt=True
|
| 85 |
)
|
| 86 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 87 |
|
| 88 |
-
generated_ids = model.generate(
|
| 89 |
-
**model_inputs,
|
| 90 |
-
max_new_tokens=512
|
| 91 |
-
)
|
| 92 |
generated_ids = [
|
| 93 |
-
output_ids[len(input_ids):]
|
|
|
|
| 94 |
]
|
| 95 |
|
| 96 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
@@ -121,6 +150,7 @@ For deployment, we recommend using vLLM.
|
|
| 121 |
}'
|
| 122 |
|
| 123 |
```
|
|
|
|
| 124 |
|
| 125 |
**License**
|
| 126 |
|
|
|
|
| 52 |
|
| 53 |
This model is static, trained on an offline dataset. Future versions may be released to enhance its performance on specialized tasks.
|
| 54 |
|
| 55 |
+
**QuickStart**
|
| 56 |
|
| 57 |
+
This code snippet demonstrates how to build a prompt with table information, and shows how to load the tokenizer, load the model, and generate content.
|
| 58 |
|
| 59 |
> Note that you need `transformers>=4.37.0` to use `TableGPT2`:
|
| 60 |
> ```sh
|
|
|
|
| 64 |
```python
|
| 65 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 66 |
|
| 67 |
+
# Using pandas to read some structured data
|
| 68 |
+
import pandas as pd
|
| 69 |
+
from io import StringIO
|
| 70 |
+
|
| 71 |
+
# single table
|
| 72 |
+
EXAMPLE_CSV_CONTENT = """
|
| 73 |
+
"Loss","Date","Score","Opponent","Record","Attendance"
|
| 74 |
+
"Hampton (14β12)","September 25","8β7","Padres","67β84","31,193"
|
| 75 |
+
"Speier (5β3)","September 26","3β1","Padres","67β85","30,711"
|
| 76 |
+
"Elarton (4β9)","September 22","3β1","@ Expos","65β83","9,707"
|
| 77 |
+
"Lundquist (0β1)","September 24","15β11","Padres","67β83","30,774"
|
| 78 |
+
"Hampton (13β11)","September 6","9β5","Dodgers","61β78","31,407"
|
| 79 |
+
"""
|
| 80 |
+
|
| 81 |
+
csv_file = StringIO(EXAMPLE_CSV_CONTENT)
|
| 82 |
+
df = pd.read_csv(csv_file)
|
| 83 |
+
# Some data preprocessing
|
| 84 |
+
# code
|
| 85 |
+
|
| 86 |
model_name = "tablegpt/TableGPT2-7B"
|
| 87 |
|
| 88 |
model = AutoModelForCausalLM.from_pretrained(
|
| 89 |
+
model_name, torch_dtype="auto", device_map="auto"
|
|
|
|
|
|
|
| 90 |
)
|
| 91 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 92 |
|
| 93 |
+
example_prompt_template = """Given access to several pandas dataframes, write the Python code to answer the user's question.
|
| 94 |
+
|
| 95 |
+
/*
|
| 96 |
+
"{var_name}.head(5).to_string(index=False)" as follows:
|
| 97 |
+
{df_info}
|
| 98 |
+
*/
|
| 99 |
+
|
| 100 |
+
Question: {user_question}
|
| 101 |
+
"""
|
| 102 |
+
question = "εͺδΊζ―θ΅ηζη»©θΎΎε°δΊ40θ40θ΄οΌ"
|
| 103 |
+
|
| 104 |
+
prompt = example_prompt_template.format(
|
| 105 |
+
var_name="df",
|
| 106 |
+
df_info=df.head(5).to_string(index=False),
|
| 107 |
+
user_question=question,
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
messages = [
|
| 111 |
{"role": "system", "content": "You are a helpful assistant."},
|
| 112 |
+
{"role": "user", "content": prompt},
|
| 113 |
]
|
| 114 |
text = tokenizer.apply_chat_template(
|
| 115 |
+
messages, tokenize=False, add_generation_prompt=True
|
|
|
|
|
|
|
| 116 |
)
|
| 117 |
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 118 |
|
| 119 |
+
generated_ids = model.generate(**model_inputs, max_new_tokens=512)
|
|
|
|
|
|
|
|
|
|
| 120 |
generated_ids = [
|
| 121 |
+
output_ids[len(input_ids) :]
|
| 122 |
+
for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
| 123 |
]
|
| 124 |
|
| 125 |
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
|
|
|
| 150 |
}'
|
| 151 |
|
| 152 |
```
|
| 153 |
+
For more details about how to use TableGPT2, please refer to [our repository on GitHub](https://github.com/tablegpt/tablegpt-agent)
|
| 154 |
|
| 155 |
**License**
|
| 156 |
|