Update README.md
Browse files
README.md
CHANGED
|
@@ -14,48 +14,60 @@ language:
|
|
| 14 |
pipeline_tag: automatic-speech-recognition
|
| 15 |
---
|
| 16 |
|
| 17 |
-
|
| 18 |
-
should probably proofread and complete it, then remove this comment. -->
|
| 19 |
|
| 20 |
-
|
|
|
|
|
|
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
|
| 26 |
|
| 27 |
## Usage
|
| 28 |
|
| 29 |
-
The wav2vec2-xlsr-53-ft-
|
| 30 |
|
| 31 |
```python
|
| 32 |
import torch
|
| 33 |
import torchaudio
|
| 34 |
import librosa
|
| 35 |
|
| 36 |
-
from transformers import Wav2Vec2ForCTC,
|
| 37 |
|
| 38 |
-
processor =
|
| 39 |
-
model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-53-ft-
|
| 40 |
|
| 41 |
-
audio, rate = librosa.load(audio_file
|
| 42 |
|
| 43 |
inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 44 |
|
| 45 |
with torch.no_grad():
|
| 46 |
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 47 |
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
|
|
|
|
|
|
|
|
|
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
```
|
| 54 |
|
|
|
|
| 55 |
## Evaluation
|
| 56 |
|
| 57 |
|
| 58 |
-
According to a balanced English+Welsh test set derived from Common Voice version 16.1, the WER of techiaith/wav2vec2-xlsr-53-ft-
|
| 59 |
|
| 60 |
However, when evaluated with language specific test sets, the model exhibits a bias to perform better with Welsh.
|
| 61 |
|
|
|
|
| 14 |
pipeline_tag: automatic-speech-recognition
|
| 15 |
---
|
| 16 |
|
| 17 |
+
# wav2vec2-xlsr-53-ft-cy-en-withlm
|
|
|
|
| 18 |
|
| 19 |
+
This model is a version of [facebook/wav2vec2-large-xlsr-53](https://huggingface.co/facebook/wav2vec2-large-xlsr-53)
|
| 20 |
+
that has been fined-tuned with a custom bilingual datasets derived from the Welsh
|
| 21 |
+
and English data releases of Mozilla Foundation's Commonvoice project. See : [techiaith/commonvoice_16_1_en_cy](https://huggingface.co/datasets/techiaith/commonvoice_16_1_en_cy).
|
| 22 |
|
| 23 |
+
In addition, this model also includes a single KenLM n-gram model trained with balanced
|
| 24 |
+
collections of Welsh and English texts from [OSCAR](https://huggingface.co/datasets/oscar)
|
| 25 |
+
This avoids the need for any language detection for determining whether to use a Welsh or English n-gram models during CTC decoding.
|
| 26 |
|
| 27 |
|
| 28 |
## Usage
|
| 29 |
|
| 30 |
+
The `wav2vec2-xlsr-53-ft-cy-en-withlm` model can be used directly as follows:
|
| 31 |
|
| 32 |
```python
|
| 33 |
import torch
|
| 34 |
import torchaudio
|
| 35 |
import librosa
|
| 36 |
|
| 37 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2ProcessorWithLM
|
| 38 |
|
| 39 |
+
processor = Wav2Vec2ProcessorWithLM.from_pretrained("techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm")
|
| 40 |
+
model = Wav2Vec2ForCTC.from_pretrained("techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm")
|
| 41 |
|
| 42 |
+
audio, rate = librosa.load(<path/to/audio_file>, sr=16000)
|
| 43 |
|
| 44 |
inputs = processor(audio, sampling_rate=16_000, return_tensors="pt", padding=True)
|
| 45 |
|
| 46 |
with torch.no_grad():
|
| 47 |
tlogits = model(inputs.input_values, attention_mask=inputs.attention_mask).logits
|
| 48 |
|
| 49 |
+
print("Prediction: ", processor.batch_decode(tlogits.numpy(), beam_width=10).text[0].strip())
|
| 50 |
+
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
Usage with a pipeline is even simpler...
|
| 54 |
|
| 55 |
+
```
|
| 56 |
+
from transformers import pipeline
|
| 57 |
+
|
| 58 |
+
transcriber = pipeline("automatic-speech-recognition", model="techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm")
|
| 59 |
|
| 60 |
+
def transcribe(audio):
|
| 61 |
+
return transcriber(audio)["text"]
|
| 62 |
+
|
| 63 |
+
transcribe(<path/or/url/to/any/audiofile>)
|
| 64 |
```
|
| 65 |
|
| 66 |
+
|
| 67 |
## Evaluation
|
| 68 |
|
| 69 |
|
| 70 |
+
According to a balanced English+Welsh test set derived from Common Voice version 16.1, the WER of techiaith/wav2vec2-xlsr-53-ft-cy-en-withlm is **23.79%**
|
| 71 |
|
| 72 |
However, when evaluated with language specific test sets, the model exhibits a bias to perform better with Welsh.
|
| 73 |
|