Upload policy weights, train config and readme
Browse files- README.md +70 -0
- config.json +1 -1
- train_config.json +2 -2
README.md
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
datasets: thewisp/pick_place_earplug
|
| 3 |
+
library_name: lerobot
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
model_name: pi05
|
| 6 |
+
pipeline_tag: robotics
|
| 7 |
+
tags:
|
| 8 |
+
- pi05
|
| 9 |
+
- lerobot
|
| 10 |
+
- robotics
|
| 11 |
+
---
|
| 12 |
+
|
| 13 |
+
# Model Card for pi05
|
| 14 |
+
|
| 15 |
+
<!-- Provide a quick summary of what the model is/does. -->
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
**Οβ.β
(Pi05) Policy**
|
| 19 |
+
|
| 20 |
+
Οβ.β
is a Vision-Language-Action model with open-world generalization, from Physical Intelligence. The LeRobot implementation is adapted from their open source OpenPI repository.
|
| 21 |
+
|
| 22 |
+
**Model Overview**
|
| 23 |
+
|
| 24 |
+
Οβ.β
represents a significant evolution from Οβ, developed by Physical Intelligence to address a big challenge in robotics: open-world generalization. While robots can perform impressive tasks in controlled environments, Οβ.β
is designed to generalize to entirely new environments and situations that were never seen during training.
|
| 25 |
+
|
| 26 |
+
For more details, see the [Physical Intelligence Οβ.β
blog post](https://www.physicalintelligence.company/blog/pi05).
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
This policy has been trained and pushed to the Hub using [LeRobot](https://github.com/huggingface/lerobot).
|
| 30 |
+
See the full documentation at [LeRobot Docs](https://huggingface.co/docs/lerobot/index).
|
| 31 |
+
|
| 32 |
+
---
|
| 33 |
+
|
| 34 |
+
## How to Get Started with the Model
|
| 35 |
+
|
| 36 |
+
For a complete walkthrough, see the [training guide](https://huggingface.co/docs/lerobot/il_robots#train-a-policy).
|
| 37 |
+
Below is the short version on how to train and run inference/eval:
|
| 38 |
+
|
| 39 |
+
### Train from scratch
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
lerobot-train \
|
| 43 |
+
--dataset.repo_id=${HF_USER}/<dataset> \
|
| 44 |
+
--policy.type=act \
|
| 45 |
+
--output_dir=outputs/train/<desired_policy_repo_id> \
|
| 46 |
+
--job_name=lerobot_training \
|
| 47 |
+
--policy.device=cuda \
|
| 48 |
+
--policy.repo_id=${HF_USER}/<desired_policy_repo_id>
|
| 49 |
+
--wandb.enable=true
|
| 50 |
+
```
|
| 51 |
+
|
| 52 |
+
_Writes checkpoints to `outputs/train/<desired_policy_repo_id>/checkpoints/`._
|
| 53 |
+
|
| 54 |
+
### Evaluate the policy/run inference
|
| 55 |
+
|
| 56 |
+
```bash
|
| 57 |
+
lerobot-record \
|
| 58 |
+
--robot.type=so100_follower \
|
| 59 |
+
--dataset.repo_id=<hf_user>/eval_<dataset> \
|
| 60 |
+
--policy.path=<hf_user>/<desired_policy_repo_id> \
|
| 61 |
+
--episodes=10
|
| 62 |
+
```
|
| 63 |
+
|
| 64 |
+
Prefix the dataset repo with **eval\_** and supply `--policy.path` pointing to a local or hub checkpoint.
|
| 65 |
+
|
| 66 |
+
---
|
| 67 |
+
|
| 68 |
+
## Model Details
|
| 69 |
+
|
| 70 |
+
- **License:** apache-2.0
|
config.json
CHANGED
|
@@ -40,7 +40,7 @@
|
|
| 40 |
"private": null,
|
| 41 |
"tags": null,
|
| 42 |
"license": null,
|
| 43 |
-
"pretrained_path": "
|
| 44 |
"paligemma_variant": "gemma_2b",
|
| 45 |
"action_expert_variant": "gemma_300m",
|
| 46 |
"dtype": "bfloat16",
|
|
|
|
| 40 |
"private": null,
|
| 41 |
"tags": null,
|
| 42 |
"license": null,
|
| 43 |
+
"pretrained_path": "outputs/pi05_training/checkpoints/last/pretrained_model",
|
| 44 |
"paligemma_variant": "gemma_2b",
|
| 45 |
"action_expert_variant": "gemma_300m",
|
| 46 |
"dtype": "bfloat16",
|
train_config.json
CHANGED
|
@@ -108,7 +108,7 @@
|
|
| 108 |
"private": null,
|
| 109 |
"tags": null,
|
| 110 |
"license": null,
|
| 111 |
-
"pretrained_path": "
|
| 112 |
"paligemma_variant": "gemma_2b",
|
| 113 |
"action_expert_variant": "gemma_300m",
|
| 114 |
"dtype": "bfloat16",
|
|
@@ -151,7 +151,7 @@
|
|
| 151 |
},
|
| 152 |
"output_dir": "outputs/pi05_training",
|
| 153 |
"job_name": "pi05_training",
|
| 154 |
-
"resume":
|
| 155 |
"seed": 1000,
|
| 156 |
"num_workers": 4,
|
| 157 |
"batch_size": 2,
|
|
|
|
| 108 |
"private": null,
|
| 109 |
"tags": null,
|
| 110 |
"license": null,
|
| 111 |
+
"pretrained_path": "outputs/pi05_training/checkpoints/last/pretrained_model",
|
| 112 |
"paligemma_variant": "gemma_2b",
|
| 113 |
"action_expert_variant": "gemma_300m",
|
| 114 |
"dtype": "bfloat16",
|
|
|
|
| 151 |
},
|
| 152 |
"output_dir": "outputs/pi05_training",
|
| 153 |
"job_name": "pi05_training",
|
| 154 |
+
"resume": true,
|
| 155 |
"seed": 1000,
|
| 156 |
"num_workers": 4,
|
| 157 |
"batch_size": 2,
|