--- library_name: transformers base_model: - google/gemma-2-27b-it --- This tiny model is intended for debugging. It is randomly initialized using the configuration adapted from [google/gemma-2-27b-it](https://huggingface.co/google/gemma-2-27b-it). ### Example usage: ```python from transformers import pipeline model_id = "tiny-random/gemma-2" pipe = pipeline('text-generation', model=model_id, device='cuda', dtype="bfloat16") print(pipe('Hello World!')) ``` ### Codes to create this repo: ```python import json from pathlib import Path import accelerate import torch from huggingface_hub import file_exists, hf_hub_download from transformers import ( AutoConfig, AutoModelForCausalLM, AutoProcessor, GenerationConfig, set_seed, ) source_model_id = "google/gemma-2-27b-it" save_folder = "/tmp/tiny-random/gemma-2" processor = AutoProcessor.from_pretrained( source_model_id, trust_remote_code=True) processor.save_pretrained(save_folder) with open(hf_hub_download(source_model_id, filename='config.json', repo_type='model'), 'r', encoding='utf-8') as f: config_json = json.load(f) config_json['hidden_size'] = 8 config_json['intermediate_size'] = 64 config_json['num_attention_heads'] = 8 config_json['num_hidden_layers'] = 2 config_json['num_key_value_heads'] = 4 config_json['head_dim'] = 32 config_json['tie_word_embeddings'] = True with open(f"{save_folder}/config.json", "w", encoding='utf-8') as f: json.dump(config_json, f, indent=2) config = AutoConfig.from_pretrained( save_folder, trust_remote_code=True, ) print(config) torch.set_default_dtype(torch.bfloat16) model = AutoModelForCausalLM.from_config(config) torch.set_default_dtype(torch.float32) if file_exists(filename="generation_config.json", repo_id=source_model_id, repo_type='model'): model.generation_config = GenerationConfig.from_pretrained( source_model_id, trust_remote_code=True, ) set_seed(42) model = model.cpu() with torch.no_grad(): for name, p in sorted(model.named_parameters()): torch.nn.init.normal_(p, 0, 0.1) print(name, p.shape) model.save_pretrained(save_folder) print(model) ``` ### Printing the model: ```text Gemma2ForCausalLM( (model): Gemma2Model( (embed_tokens): Embedding(256000, 8, padding_idx=0) (layers): ModuleList( (0-1): 2 x Gemma2DecoderLayer( (self_attn): Gemma2Attention( (q_proj): Linear(in_features=8, out_features=256, bias=False) (k_proj): Linear(in_features=8, out_features=128, bias=False) (v_proj): Linear(in_features=8, out_features=128, bias=False) (o_proj): Linear(in_features=256, out_features=8, bias=False) ) (mlp): Gemma2MLP( (gate_proj): Linear(in_features=8, out_features=64, bias=False) (up_proj): Linear(in_features=8, out_features=64, bias=False) (down_proj): Linear(in_features=64, out_features=8, bias=False) (act_fn): GELUTanh() ) (input_layernorm): Gemma2RMSNorm((8,), eps=1e-06) (post_attention_layernorm): Gemma2RMSNorm((8,), eps=1e-06) (pre_feedforward_layernorm): Gemma2RMSNorm((8,), eps=1e-06) (post_feedforward_layernorm): Gemma2RMSNorm((8,), eps=1e-06) ) ) (norm): Gemma2RMSNorm((8,), eps=1e-06) (rotary_emb): Gemma2RotaryEmbedding() ) (lm_head): Linear(in_features=8, out_features=256000, bias=False) ) ```