tomaarsen HF Staff commited on
Commit
7ca7e07
·
verified ·
1 Parent(s): 32fea88

Add new SentenceTransformer model

Browse files
README.md ADDED
@@ -0,0 +1,679 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - dense
10
+ - generated_from_trainer
11
+ - dataset_size:132553
12
+ - loss:MultipleNegativesSymmetricRankingLoss
13
+ base_model: laion/clap-htsat-fused
14
+ widget:
15
+ - source_sentence: HE WAS OUT OF HIS MIND WITH SOMETHING HE OVERHEARD ABOUT EATING
16
+ PEOPLE'S FLESH AND DRINKING BLOOD WHAT'S THE GOOD OF TALKING LIKE THAT
17
+ sentences:
18
+ - NESTORIUS WHO DEPENDED ON THE NEAR APPROACH OF HIS EASTERN FRIENDS PERSISTED LIKE
19
+ HIS PREDECESSOR CHRYSOSTOM TO DISCLAIM THE JURISDICTION AND TO DISOBEY THE SUMMONS
20
+ OF HIS ENEMIES THEY HASTENED HIS TRIAL AND HIS ACCUSER PRESIDED IN THE SEAT OF
21
+ JUDGMENT
22
+ - THEN BACK I TURNED MY FACE TO THOSE HIGH THINGS WHICH MOVED THEMSELVES TOWARDS
23
+ US SO SEDATELY THEY HAD BEEN DISTANCED BY NEW WEDDED BRIDES
24
+ - THE PROGRESS OF PRESIDENT DAVIS TO THE NEW CAPITAL SET IN THE VERY FACE OF THE
25
+ FOE WAS TO BE ONE HUGE TRIUMPH OF FAITH AND LOYALTY
26
+ - source_sentence: I BELIEVE THE SERIOUSNESS OF THE AMERICANS ARISES PARTLY FROM THEIR
27
+ PRIDE
28
+ sentences:
29
+ - YOU HAVE BEEN TO THE HOTEL HE BURST OUT YOU HAVE SEEN CATHERINE
30
+ - WHAT DO YOU MEAN SIR
31
+ - A HARSH LAUGH FROM COMRADE OSSIPON CUT THE TIRADE DEAD SHORT IN A SUDDEN FALTERING
32
+ OF THE TONGUE AND A BEWILDERED UNSTEADINESS OF THE APOSTLE'S MILDLY EXALTED EYES
33
+ - source_sentence: BUT YOU OUGHT TO HAVE KNOWN THAT WE ARE ONLY HALF AN HOUR BEHIND
34
+ YOU AT SYDENHAM IN THE MATTER OF NEWS
35
+ sentences:
36
+ - DOWN BELOW IN THE QUIET NARROW STREET MEASURED FOOTSTEPS APPROACHED THE HOUSE
37
+ THEN DIED AWAY UNHURRIED AND FIRM AS IF THE PASSER BY HAD STARTED TO PACE OUT
38
+ ALL ETERNITY FROM GAS LAMP TO GAS LAMP IN A NIGHT WITHOUT END AND THE DROWSY TICKING
39
+ OF THE OLD CLOCK ON THE LANDING BECAME DISTINCTLY AUDIBLE IN THE BEDROOM
40
+ - IT WAS A SUMMER NIGHT AND THE GUESTS WERE WANDERING IN AND OUT AT WILL AND THROUGH
41
+ HOUSE AND GARDEN AMID LOVELY THINGS OF ALL COLORS AND ODORS
42
+ - IF A MAN WERE SLAIN IN BATTLE IT WAS AN OLD CUSTOM TO PLACE HIS BODY AGAINST A
43
+ TREE OR ROCK IN A SITTING POSITION ALWAYS FACING THE ENEMY TO INDICATE HIS UNDAUNTED
44
+ DEFIANCE AND BRAVERY EVEN IN DEATH
45
+ - source_sentence: THE MERCHANT'S DAUGHTER AT FIRST DID NOT ANSWER BUT AS HE KEPT
46
+ ON CALLING TO HER SHE FINALLY ASKED HIM WHAT IT WAS THAT HE WANTED
47
+ sentences:
48
+ - LODGED IN THE BRANCHES OF A PINYON TREE I THINK IT IS BUT HE DOESN'T ANSWER ME
49
+ - HOW ASKED TAD
50
+ - THE SECOND WAS AS IF HER FLESH AND BONES HAD ALL BEEN FASHIONED OUT OF EMERALD
51
+ THE THIRD APPEARED AS SNOW BUT NEWLY FALLEN
52
+ - source_sentence: THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED
53
+ LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE
54
+ INTOLERABLE THOSE ARE THE FANATICS
55
+ sentences:
56
+ - I SHALL LOCK UP ALL THE DOORS AND WINDOWS IN THE HOUSE AND THEN I SHALL GIVE YOU
57
+ MY LATCH KEY AND YOU CAN LET YOURSELF IN AND STAY THE NIGHT HERE THERE IS NO ONE
58
+ IN THE HOUSE
59
+ - HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN
60
+ INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST
61
+ - HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT
62
+ THE MONEY PERHAPS HE COULD DO IT UP HERE
63
+ datasets:
64
+ - openslr/librispeech_asr
65
+ pipeline_tag: sentence-similarity
66
+ library_name: sentence-transformers
67
+ metrics:
68
+ - cosine_accuracy@1
69
+ - cosine_accuracy@3
70
+ - cosine_accuracy@5
71
+ - cosine_accuracy@10
72
+ - cosine_precision@1
73
+ - cosine_precision@3
74
+ - cosine_precision@5
75
+ - cosine_precision@10
76
+ - cosine_recall@1
77
+ - cosine_recall@3
78
+ - cosine_recall@5
79
+ - cosine_recall@10
80
+ - cosine_ndcg@10
81
+ - cosine_mrr@10
82
+ - cosine_map@100
83
+ co2_eq_emissions:
84
+ emissions: 114.78151570511905
85
+ energy_consumed: 0.42889417052827883
86
+ source: codecarbon
87
+ training_type: fine-tuning
88
+ on_cloud: false
89
+ cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
90
+ ram_total_size: 31.777088165283203
91
+ hours_used: 2.094
92
+ hardware_used: 1 x NVIDIA GeForce RTX 3090
93
+ model-index:
94
+ - name: CLAP model trained on COCO Captions
95
+ results:
96
+ - task:
97
+ type: information-retrieval
98
+ name: Information Retrieval
99
+ dataset:
100
+ name: librispeech eval
101
+ type: librispeech-eval
102
+ metrics:
103
+ - type: cosine_accuracy@1
104
+ value: 0.108
105
+ name: Cosine Accuracy@1
106
+ - type: cosine_accuracy@3
107
+ value: 0.196
108
+ name: Cosine Accuracy@3
109
+ - type: cosine_accuracy@5
110
+ value: 0.272
111
+ name: Cosine Accuracy@5
112
+ - type: cosine_accuracy@10
113
+ value: 0.438
114
+ name: Cosine Accuracy@10
115
+ - type: cosine_precision@1
116
+ value: 0.108
117
+ name: Cosine Precision@1
118
+ - type: cosine_precision@3
119
+ value: 0.06533333333333333
120
+ name: Cosine Precision@3
121
+ - type: cosine_precision@5
122
+ value: 0.054400000000000004
123
+ name: Cosine Precision@5
124
+ - type: cosine_precision@10
125
+ value: 0.0438
126
+ name: Cosine Precision@10
127
+ - type: cosine_recall@1
128
+ value: 0.108
129
+ name: Cosine Recall@1
130
+ - type: cosine_recall@3
131
+ value: 0.196
132
+ name: Cosine Recall@3
133
+ - type: cosine_recall@5
134
+ value: 0.272
135
+ name: Cosine Recall@5
136
+ - type: cosine_recall@10
137
+ value: 0.438
138
+ name: Cosine Recall@10
139
+ - type: cosine_ndcg@10
140
+ value: 0.24322279069515917
141
+ name: Cosine Ndcg@10
142
+ - type: cosine_mrr@10
143
+ value: 0.18493690476190464
144
+ name: Cosine Mrr@10
145
+ - type: cosine_map@100
146
+ value: 0.20597911270433167
147
+ name: Cosine Map@100
148
+ - task:
149
+ type: information-retrieval
150
+ name: Information Retrieval
151
+ dataset:
152
+ name: librispeech test
153
+ type: librispeech-test
154
+ metrics:
155
+ - type: cosine_accuracy@1
156
+ value: 0.151
157
+ name: Cosine Accuracy@1
158
+ - type: cosine_accuracy@3
159
+ value: 0.288
160
+ name: Cosine Accuracy@3
161
+ - type: cosine_accuracy@5
162
+ value: 0.371
163
+ name: Cosine Accuracy@5
164
+ - type: cosine_accuracy@10
165
+ value: 0.518
166
+ name: Cosine Accuracy@10
167
+ - type: cosine_precision@1
168
+ value: 0.151
169
+ name: Cosine Precision@1
170
+ - type: cosine_precision@3
171
+ value: 0.096
172
+ name: Cosine Precision@3
173
+ - type: cosine_precision@5
174
+ value: 0.0742
175
+ name: Cosine Precision@5
176
+ - type: cosine_precision@10
177
+ value: 0.0518
178
+ name: Cosine Precision@10
179
+ - type: cosine_recall@1
180
+ value: 0.151
181
+ name: Cosine Recall@1
182
+ - type: cosine_recall@3
183
+ value: 0.288
184
+ name: Cosine Recall@3
185
+ - type: cosine_recall@5
186
+ value: 0.371
187
+ name: Cosine Recall@5
188
+ - type: cosine_recall@10
189
+ value: 0.518
190
+ name: Cosine Recall@10
191
+ - type: cosine_ndcg@10
192
+ value: 0.31319206378414244
193
+ name: Cosine Ndcg@10
194
+ - type: cosine_mrr@10
195
+ value: 0.25047857142857116
196
+ name: Cosine Mrr@10
197
+ - type: cosine_map@100
198
+ value: 0.2693786295421681
199
+ name: Cosine Map@100
200
+ ---
201
+
202
+ # CLAP model trained on COCO Captions
203
+
204
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) on the [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
205
+
206
+ ## Model Details
207
+
208
+ ### Model Description
209
+ - **Model Type:** Sentence Transformer
210
+ - **Base model:** [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) <!-- at revision 1d58d5192f5e4f16b57c574c7daf3d941404bd06 -->
211
+ - **Maximum Sequence Length:** None tokens
212
+ - **Output Dimensionality:** None dimensions
213
+ - **Similarity Function:** Cosine Similarity
214
+ - **Training Dataset:**
215
+ - [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr)
216
+ - **Language:** en
217
+ - **License:** apache-2.0
218
+
219
+ ### Model Sources
220
+
221
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
222
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
223
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
224
+
225
+ ### Full Model Architecture
226
+
227
+ ```
228
+ SentenceTransformer(
229
+ (0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'audio': {'method': 'get_audio_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'ClapModel'})
230
+ )
231
+ ```
232
+
233
+ ## Usage
234
+
235
+ ### Direct Usage (Sentence Transformers)
236
+
237
+ First install the Sentence Transformers library:
238
+
239
+ ```bash
240
+ pip install -U sentence-transformers
241
+ ```
242
+
243
+ Then you can load this model and run inference.
244
+ ```python
245
+ from sentence_transformers import SentenceTransformer
246
+
247
+ # Download from the 🤗 Hub
248
+ model = SentenceTransformer("tomaarsen/clap-htsat-fused-librispeech")
249
+ # Run inference
250
+ sentences = [
251
+ 'THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE INTOLERABLE THOSE ARE THE FANATICS',
252
+ 'HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT THE MONEY PERHAPS HE COULD DO IT UP HERE',
253
+ 'HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST',
254
+ ]
255
+ embeddings = model.encode(sentences)
256
+ print(embeddings.shape)
257
+ # [3, 1024]
258
+
259
+ # Get the similarity scores for the embeddings
260
+ similarities = model.similarity(embeddings, embeddings)
261
+ print(similarities)
262
+ # tensor([[ 1.0000, -0.4742, -0.2719],
263
+ # [-0.4742, 1.0000, 0.8206],
264
+ # [-0.2719, 0.8206, 1.0000]])
265
+ ```
266
+
267
+ <!--
268
+ ### Direct Usage (Transformers)
269
+
270
+ <details><summary>Click to see the direct usage in Transformers</summary>
271
+
272
+ </details>
273
+ -->
274
+
275
+ <!--
276
+ ### Downstream Usage (Sentence Transformers)
277
+
278
+ You can finetune this model on your own dataset.
279
+
280
+ <details><summary>Click to expand</summary>
281
+
282
+ </details>
283
+ -->
284
+
285
+ <!--
286
+ ### Out-of-Scope Use
287
+
288
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
289
+ -->
290
+
291
+ ## Evaluation
292
+
293
+ ### Metrics
294
+
295
+ #### Information Retrieval
296
+
297
+ * Datasets: `librispeech-eval` and `librispeech-test`
298
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
299
+
300
+ | Metric | librispeech-eval | librispeech-test |
301
+ |:--------------------|:-----------------|:-----------------|
302
+ | cosine_accuracy@1 | 0.108 | 0.151 |
303
+ | cosine_accuracy@3 | 0.196 | 0.288 |
304
+ | cosine_accuracy@5 | 0.272 | 0.371 |
305
+ | cosine_accuracy@10 | 0.438 | 0.518 |
306
+ | cosine_precision@1 | 0.108 | 0.151 |
307
+ | cosine_precision@3 | 0.0653 | 0.096 |
308
+ | cosine_precision@5 | 0.0544 | 0.0742 |
309
+ | cosine_precision@10 | 0.0438 | 0.0518 |
310
+ | cosine_recall@1 | 0.108 | 0.151 |
311
+ | cosine_recall@3 | 0.196 | 0.288 |
312
+ | cosine_recall@5 | 0.272 | 0.371 |
313
+ | cosine_recall@10 | 0.438 | 0.518 |
314
+ | **cosine_ndcg@10** | **0.2432** | **0.3132** |
315
+ | cosine_mrr@10 | 0.1849 | 0.2505 |
316
+ | cosine_map@100 | 0.206 | 0.2694 |
317
+
318
+ <!--
319
+ ## Bias, Risks and Limitations
320
+
321
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
322
+ -->
323
+
324
+ <!--
325
+ ### Recommendations
326
+
327
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
328
+ -->
329
+
330
+ ## Training Details
331
+
332
+ ### Training Dataset
333
+
334
+ #### librispeech_asr
335
+
336
+ * Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)
337
+ * Size: 132,553 training samples
338
+ * Columns: <code>audio</code> and <code>text</code>
339
+ * Approximate statistics based on the first 1000 samples:
340
+ | | audio | text |
341
+ |:--------|:-------------------|:-------------------------------------------------------------------------------------------------|
342
+ | type | dict | string |
343
+ | details | <ul><li></li></ul> | <ul><li>min: 20 characters</li><li>mean: 189.15 characters</li><li>max: 294 characters</li></ul> |
344
+ * Samples:
345
+ | audio | text |
346
+ |:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
347
+ | <code>{'path': '374-180298-0000.flac', 'array': array([ 6.92203816e-04, 8.04404495e-04, 8.03834875e-04, ...,<br> -3.02505396e-05, -6.59527450e-06, 1.11444592e-06]), 'sampling_rate': 48000}</code> | <code>CHAPTER SIXTEEN I MIGHT HAVE TOLD YOU OF THE BEGINNING OF THIS LIAISON IN A FEW LINES BUT I WANTED YOU TO SEE EVERY STEP BY WHICH WE CAME I TO AGREE TO WHATEVER MARGUERITE WISHED</code> |
348
+ | <code>{'path': '374-180298-0001.flac', 'array': array([-9.33515839e-05, -1.25754057e-04, -1.44482241e-04, ...,<br> -2.66165182e-04, -2.03228556e-04, -1.03404833e-04]), 'sampling_rate': 48000}</code> | <code>MARGUERITE TO BE UNABLE TO LIVE APART FROM ME IT WAS THE DAY AFTER THE EVENING WHEN SHE CAME TO SEE ME THAT I SENT HER MANON LESCAUT FROM THAT TIME SEEING THAT I COULD NOT CHANGE MY MISTRESS'S LIFE I CHANGED MY OWN</code> |
349
+ | <code>{'path': '374-180298-0002.flac', 'array': array([-2.47883319e-04, -2.91854434e-04, -2.82971043e-04, ...,<br> -1.43931946e-04, -1.17829914e-04, -6.32331648e-05]), 'sampling_rate': 48000}</code> | <code>I WISHED ABOVE ALL NOT TO LEAVE MYSELF TIME TO THINK OVER THE POSITION I HAD ACCEPTED FOR IN SPITE OF MYSELF IT WAS A GREAT DISTRESS TO ME THUS MY LIFE GENERALLY SO CALM</code> |
350
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
351
+ ```json
352
+ {
353
+ "scale": 20.0,
354
+ "similarity_fct": "cos_sim",
355
+ "gather_across_devices": false
356
+ }
357
+ ```
358
+
359
+ ### Evaluation Dataset
360
+
361
+ #### librispeech_asr
362
+
363
+ * Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)
364
+ * Size: 1,000 evaluation samples
365
+ * Columns: <code>audio</code> and <code>text</code>
366
+ * Approximate statistics based on the first 1000 samples:
367
+ | | audio | text |
368
+ |:--------|:-------------------|:------------------------------------------------------------------------------------------------|
369
+ | type | dict | string |
370
+ | details | <ul><li></li></ul> | <ul><li>min: 8 characters</li><li>mean: 104.62 characters</li><li>max: 516 characters</li></ul> |
371
+ * Samples:
372
+ | audio | text |
373
+ |:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
374
+ | <code>{'path': '2277-149896-0000.flac', 'array': array([ 0.00179741, 0.00170625, 0.00120927, ..., -0.00144462,<br> -0.00102732, -0.00048062]), 'sampling_rate': 48000}</code> | <code>HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE</code> |
375
+ | <code>{'path': '2277-149896-0001.flac', 'array': array([ 0.00111104, 0.00081758, 0.00021103, ..., -0.00138193,<br> -0.0009173 , -0.00041702]), 'sampling_rate': 48000}</code> | <code>HE WOULD HAVE TO PAY HER THE MONEY WHICH SHE WOULD NOW REGULARLY DEMAND OR THERE WOULD BE TROUBLE IT DID NOT MATTER WHAT HE DID</code> |
376
+ | <code>{'path': '2277-149896-0002.flac', 'array': array([0.00080266, 0.00088462, 0.00083408, ..., 0.00105488, 0.00083673,<br> 0.00043296]), 'sampling_rate': 48000}</code> | <code>HURSTWOOD WALKED THE FLOOR MENTALLY ARRANGING THE CHIEF POINTS OF HIS SITUATION</code> |
377
+ * Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
378
+ ```json
379
+ {
380
+ "scale": 20.0,
381
+ "similarity_fct": "cos_sim",
382
+ "gather_across_devices": false
383
+ }
384
+ ```
385
+
386
+ ### Training Hyperparameters
387
+ #### Non-Default Hyperparameters
388
+
389
+ - `eval_strategy`: steps
390
+ - `per_device_train_batch_size`: 16
391
+ - `per_device_eval_batch_size`: 16
392
+ - `learning_rate`: 2e-05
393
+ - `num_train_epochs`: 1
394
+ - `warmup_ratio`: 0.1
395
+ - `bf16`: True
396
+ - `batch_sampler`: no_duplicates
397
+
398
+ #### All Hyperparameters
399
+ <details><summary>Click to expand</summary>
400
+
401
+ - `overwrite_output_dir`: False
402
+ - `do_predict`: False
403
+ - `eval_strategy`: steps
404
+ - `prediction_loss_only`: True
405
+ - `per_device_train_batch_size`: 16
406
+ - `per_device_eval_batch_size`: 16
407
+ - `gradient_accumulation_steps`: 1
408
+ - `eval_accumulation_steps`: None
409
+ - `torch_empty_cache_steps`: None
410
+ - `learning_rate`: 2e-05
411
+ - `weight_decay`: 0.0
412
+ - `adam_beta1`: 0.9
413
+ - `adam_beta2`: 0.999
414
+ - `adam_epsilon`: 1e-08
415
+ - `max_grad_norm`: 1.0
416
+ - `num_train_epochs`: 1
417
+ - `max_steps`: -1
418
+ - `lr_scheduler_type`: linear
419
+ - `lr_scheduler_kwargs`: {}
420
+ - `warmup_ratio`: 0.1
421
+ - `warmup_steps`: 0
422
+ - `log_level`: passive
423
+ - `log_level_replica`: warning
424
+ - `log_on_each_node`: True
425
+ - `logging_nan_inf_filter`: True
426
+ - `save_safetensors`: True
427
+ - `save_on_each_node`: False
428
+ - `save_only_model`: False
429
+ - `restore_callback_states_from_checkpoint`: False
430
+ - `use_cpu`: False
431
+ - `seed`: 42
432
+ - `data_seed`: None
433
+ - `jit_mode_eval`: False
434
+ - `bf16`: True
435
+ - `fp16`: False
436
+ - `half_precision_backend`: None
437
+ - `bf16_full_eval`: False
438
+ - `fp16_full_eval`: False
439
+ - `tf32`: None
440
+ - `local_rank`: 0
441
+ - `ddp_backend`: None
442
+ - `tpu_num_cores`: None
443
+ - `debug`: []
444
+ - `dataloader_drop_last`: False
445
+ - `dataloader_num_workers`: 0
446
+ - `dataloader_prefetch_factor`: None
447
+ - `past_index`: -1
448
+ - `disable_tqdm`: False
449
+ - `remove_unused_columns`: True
450
+ - `label_names`: None
451
+ - `load_best_model_at_end`: False
452
+ - `ignore_data_skip`: False
453
+ - `fsdp`: []
454
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
455
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
456
+ - `parallelism_config`: None
457
+ - `deepspeed`: None
458
+ - `label_smoothing_factor`: 0.0
459
+ - `optim`: adamw_torch_fused
460
+ - `optim_args`: None
461
+ - `group_by_length`: False
462
+ - `length_column_name`: length
463
+ - `ddp_find_unused_parameters`: None
464
+ - `ddp_bucket_cap_mb`: None
465
+ - `ddp_broadcast_buffers`: False
466
+ - `dataloader_pin_memory`: True
467
+ - `dataloader_persistent_workers`: False
468
+ - `skip_memory_metrics`: True
469
+ - `use_legacy_prediction_loop`: False
470
+ - `push_to_hub`: False
471
+ - `resume_from_checkpoint`: None
472
+ - `hub_model_id`: None
473
+ - `hub_strategy`: every_save
474
+ - `hub_private_repo`: None
475
+ - `hub_always_push`: False
476
+ - `hub_revision`: None
477
+ - `gradient_checkpointing`: False
478
+ - `gradient_checkpointing_kwargs`: None
479
+ - `include_for_metrics`: []
480
+ - `eval_do_concat_batches`: True
481
+ - `mp_parameters`:
482
+ - `auto_find_batch_size`: False
483
+ - `full_determinism`: False
484
+ - `ray_scope`: last
485
+ - `ddp_timeout`: 1800
486
+ - `torch_compile`: False
487
+ - `torch_compile_backend`: None
488
+ - `torch_compile_mode`: None
489
+ - `include_tokens_per_second`: False
490
+ - `include_num_input_tokens_seen`: no
491
+ - `neftune_noise_alpha`: None
492
+ - `optim_target_modules`: None
493
+ - `batch_eval_metrics`: False
494
+ - `eval_on_start`: False
495
+ - `use_liger_kernel`: False
496
+ - `liger_kernel_config`: None
497
+ - `eval_use_gather_object`: False
498
+ - `average_tokens_across_devices`: True
499
+ - `prompts`: None
500
+ - `batch_sampler`: no_duplicates
501
+ - `multi_dataset_batch_sampler`: proportional
502
+ - `router_mapping`: {}
503
+ - `learning_rate_mapping`: {}
504
+
505
+ </details>
506
+
507
+ ### Training Logs
508
+ <details><summary>Click to expand</summary>
509
+
510
+ | Epoch | Step | Training Loss | Validation Loss | librispeech-eval_cosine_ndcg@10 | librispeech-test_cosine_ndcg@10 |
511
+ |:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:-------------------------------:|
512
+ | -1 | -1 | - | - | 0.0114 | - |
513
+ | 0.0100 | 83 | 3.5908 | - | - | - |
514
+ | 0.0200 | 166 | 2.5371 | - | - | - |
515
+ | 0.0301 | 249 | 2.1799 | - | - | - |
516
+ | 0.0401 | 332 | 2.0415 | - | - | - |
517
+ | 0.0501 | 415 | 1.9394 | - | - | - |
518
+ | 0.0601 | 498 | 1.8167 | - | - | - |
519
+ | 0.0701 | 581 | 1.7589 | - | - | - |
520
+ | 0.0801 | 664 | 1.7262 | - | - | - |
521
+ | 0.0902 | 747 | 1.7585 | - | - | - |
522
+ | 0.1001 | 829 | - | 1.5991 | 0.0335 | - |
523
+ | 0.1002 | 830 | 1.7521 | - | - | - |
524
+ | 0.1102 | 913 | 1.6822 | - | - | - |
525
+ | 0.1202 | 996 | 1.6176 | - | - | - |
526
+ | 0.1302 | 1079 | 1.6391 | - | - | - |
527
+ | 0.1403 | 1162 | 1.6931 | - | - | - |
528
+ | 0.1503 | 1245 | 1.4626 | - | - | - |
529
+ | 0.1603 | 1328 | 1.4305 | - | - | - |
530
+ | 0.1703 | 1411 | 1.4998 | - | - | - |
531
+ | 0.1803 | 1494 | 1.4073 | - | - | - |
532
+ | 0.1903 | 1577 | 1.3843 | - | - | - |
533
+ | 0.2001 | 1658 | - | 1.2227 | 0.0925 | - |
534
+ | 0.2004 | 1660 | 1.3371 | - | - | - |
535
+ | 0.2104 | 1743 | 1.3908 | - | - | - |
536
+ | 0.2204 | 1826 | 1.2835 | - | - | - |
537
+ | 0.2304 | 1909 | 1.3203 | - | - | - |
538
+ | 0.2404 | 1992 | 1.2549 | - | - | - |
539
+ | 0.2505 | 2075 | 1.2384 | - | - | - |
540
+ | 0.2605 | 2158 | 1.2189 | - | - | - |
541
+ | 0.2705 | 2241 | 1.1658 | - | - | - |
542
+ | 0.2805 | 2324 | 1.1771 | - | - | - |
543
+ | 0.2905 | 2407 | 1.2068 | - | - | - |
544
+ | 0.3002 | 2487 | - | 1.0471 | 0.1318 | - |
545
+ | 0.3005 | 2490 | 1.1708 | - | - | - |
546
+ | 0.3106 | 2573 | 1.1389 | - | - | - |
547
+ | 0.3206 | 2656 | 1.0786 | - | - | - |
548
+ | 0.3306 | 2739 | 1.0792 | - | - | - |
549
+ | 0.3406 | 2822 | 1.0562 | - | - | - |
550
+ | 0.3506 | 2905 | 0.98 | - | - | - |
551
+ | 0.3607 | 2988 | 1.1153 | - | - | - |
552
+ | 0.3707 | 3071 | 0.9987 | - | - | - |
553
+ | 0.3807 | 3154 | 1.0002 | - | - | - |
554
+ | 0.3907 | 3237 | 1.0017 | - | - | - |
555
+ | 0.4002 | 3316 | - | 0.8901 | 0.1589 | - |
556
+ | 0.4007 | 3320 | 0.9364 | - | - | - |
557
+ | 0.4107 | 3403 | 0.9394 | - | - | - |
558
+ | 0.4208 | 3486 | 0.9459 | - | - | - |
559
+ | 0.4308 | 3569 | 0.9604 | - | - | - |
560
+ | 0.4408 | 3652 | 0.9491 | - | - | - |
561
+ | 0.4508 | 3735 | 0.9295 | - | - | - |
562
+ | 0.4608 | 3818 | 0.9508 | - | - | - |
563
+ | 0.4709 | 3901 | 0.9122 | - | - | - |
564
+ | 0.4809 | 3984 | 0.8483 | - | - | - |
565
+ | 0.4909 | 4067 | 0.8443 | - | - | - |
566
+ | 0.5003 | 4145 | - | 0.7955 | 0.1908 | - |
567
+ | 0.5009 | 4150 | 0.8838 | - | - | - |
568
+ | 0.5109 | 4233 | 0.8367 | - | - | - |
569
+ | 0.5209 | 4316 | 0.8516 | - | - | - |
570
+ | 0.5310 | 4399 | 0.8112 | - | - | - |
571
+ | 0.5410 | 4482 | 0.8368 | - | - | - |
572
+ | 0.5510 | 4565 | 0.873 | - | - | - |
573
+ | 0.5610 | 4648 | 0.8156 | - | - | - |
574
+ | 0.5710 | 4731 | 0.8864 | - | - | - |
575
+ | 0.5811 | 4814 | 0.8278 | - | - | - |
576
+ | 0.5911 | 4897 | 0.8006 | - | - | - |
577
+ | 0.6004 | 4974 | - | 0.7649 | 0.1874 | - |
578
+ | 0.6011 | 4980 | 0.8199 | - | - | - |
579
+ | 0.6111 | 5063 | 0.7475 | - | - | - |
580
+ | 0.6211 | 5146 | 0.7345 | - | - | - |
581
+ | 0.6311 | 5229 | 0.7301 | - | - | - |
582
+ | 0.6412 | 5312 | 0.774 | - | - | - |
583
+ | 0.6512 | 5395 | 0.7391 | - | - | - |
584
+ | 0.6612 | 5478 | 0.6929 | - | - | - |
585
+ | 0.6712 | 5561 | 0.7218 | - | - | - |
586
+ | 0.6812 | 5644 | 0.7071 | - | - | - |
587
+ | 0.6912 | 5727 | 0.7024 | - | - | - |
588
+ | 0.7004 | 5803 | - | 0.6712 | 0.2419 | - |
589
+ | 0.7013 | 5810 | 0.6428 | - | - | - |
590
+ | 0.7113 | 5893 | 0.6719 | - | - | - |
591
+ | 0.7213 | 5976 | 0.6972 | - | - | - |
592
+ | 0.7313 | 6059 | 0.7043 | - | - | - |
593
+ | 0.7413 | 6142 | 0.663 | - | - | - |
594
+ | 0.7514 | 6225 | 0.6963 | - | - | - |
595
+ | 0.7614 | 6308 | 0.6591 | - | - | - |
596
+ | 0.7714 | 6391 | 0.6736 | - | - | - |
597
+ | 0.7814 | 6474 | 0.7033 | - | - | - |
598
+ | 0.7914 | 6557 | 0.6314 | - | - | - |
599
+ | 0.8005 | 6632 | - | 0.6806 | 0.2319 | - |
600
+ | 0.8014 | 6640 | 0.6508 | - | - | - |
601
+ | 0.8115 | 6723 | 0.6532 | - | - | - |
602
+ | 0.8215 | 6806 | 0.6788 | - | - | - |
603
+ | 0.8315 | 6889 | 0.6038 | - | - | - |
604
+ | 0.8415 | 6972 | 0.658 | - | - | - |
605
+ | 0.8515 | 7055 | 0.656 | - | - | - |
606
+ | 0.8616 | 7138 | 0.6533 | - | - | - |
607
+ | 0.8716 | 7221 | 0.601 | - | - | - |
608
+ | 0.8816 | 7304 | 0.6243 | - | - | - |
609
+ | 0.8916 | 7387 | 0.6315 | - | - | - |
610
+ | 0.9005 | 7461 | - | 0.6526 | 0.2432 | - |
611
+ | 0.9016 | 7470 | 0.5707 | - | - | - |
612
+ | 0.9116 | 7553 | 0.5778 | - | - | - |
613
+ | 0.9217 | 7636 | 0.5736 | - | - | - |
614
+ | 0.9317 | 7719 | 0.615 | - | - | - |
615
+ | 0.9417 | 7802 | 0.5756 | - | - | - |
616
+ | 0.9517 | 7885 | 0.5724 | - | - | - |
617
+ | 0.9617 | 7968 | 0.5678 | - | - | - |
618
+ | 0.9718 | 8051 | 0.5661 | - | - | - |
619
+ | 0.9818 | 8134 | 0.6162 | - | - | - |
620
+ | 0.9918 | 8217 | 0.5766 | - | - | - |
621
+ | -1 | -1 | - | - | - | 0.3132 |
622
+
623
+ </details>
624
+
625
+ ### Environmental Impact
626
+ Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
627
+ - **Energy Consumed**: 0.429 kWh
628
+ - **Carbon Emitted**: 0.115 kg of CO2
629
+ - **Hours Used**: 2.094 hours
630
+
631
+ ### Training Hardware
632
+ - **On Cloud**: No
633
+ - **GPU Model**: 1 x NVIDIA GeForce RTX 3090
634
+ - **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
635
+ - **RAM Size**: 31.78 GB
636
+
637
+ ### Framework Versions
638
+ - Python: 3.11.6
639
+ - Sentence Transformers: 5.2.0.dev0
640
+ - Transformers: 4.57.0.dev0
641
+ - PyTorch: 2.8.0+cu128
642
+ - Accelerate: 1.6.0
643
+ - Datasets: 3.6.0
644
+ - Tokenizers: 0.22.1
645
+
646
+ ## Citation
647
+
648
+ ### BibTeX
649
+
650
+ #### Sentence Transformers
651
+ ```bibtex
652
+ @inproceedings{reimers-2019-sentence-bert,
653
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
654
+ author = "Reimers, Nils and Gurevych, Iryna",
655
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
656
+ month = "11",
657
+ year = "2019",
658
+ publisher = "Association for Computational Linguistics",
659
+ url = "https://arxiv.org/abs/1908.10084",
660
+ }
661
+ ```
662
+
663
+ <!--
664
+ ## Glossary
665
+
666
+ *Clearly define terms in order to be accessible across audiences.*
667
+ -->
668
+
669
+ <!--
670
+ ## Model Card Authors
671
+
672
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
673
+ -->
674
+
675
+ <!--
676
+ ## Model Card Contact
677
+
678
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
679
+ -->
config.json ADDED
@@ -0,0 +1,90 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "ClapModel"
4
+ ],
5
+ "audio_config": {
6
+ "aff_block_r": 4,
7
+ "attention_probs_dropout_prob": 0.0,
8
+ "depths": [
9
+ 2,
10
+ 2,
11
+ 6,
12
+ 2
13
+ ],
14
+ "drop_path_rate": 0.0,
15
+ "dtype": "float32",
16
+ "enable_fusion": true,
17
+ "enable_patch_fusion": true,
18
+ "enable_patch_layer_norm": true,
19
+ "flatten_patch_embeds": true,
20
+ "fusion_num_hidden_layers": 2,
21
+ "fusion_type": null,
22
+ "hidden_act": "gelu",
23
+ "hidden_dropout_prob": 0.1,
24
+ "hidden_size": 768,
25
+ "initializer_factor": 1.0,
26
+ "layer_norm_eps": 1e-05,
27
+ "mlp_ratio": 4.0,
28
+ "model_type": "clap_audio_model",
29
+ "num_attention_heads": [
30
+ 4,
31
+ 8,
32
+ 16,
33
+ 32
34
+ ],
35
+ "num_classes": 527,
36
+ "num_hidden_layers": 4,
37
+ "num_mel_bins": 64,
38
+ "patch_embed_input_channels": 1,
39
+ "patch_embeds_hidden_size": 96,
40
+ "patch_size": 4,
41
+ "patch_stride": [
42
+ 4,
43
+ 4
44
+ ],
45
+ "projection_dim": 512,
46
+ "projection_hidden_act": "relu",
47
+ "projection_hidden_size": 768,
48
+ "qkv_bias": true,
49
+ "spec_size": 256,
50
+ "tf_legacy_loss": false,
51
+ "use_bfloat16": false,
52
+ "window_size": 8
53
+ },
54
+ "dtype": "float32",
55
+ "hidden_size": 768,
56
+ "initializer_factor": 1.0,
57
+ "logit_scale_init_value": 14.285714285714285,
58
+ "model_type": "clap",
59
+ "num_hidden_layers": 16,
60
+ "projection_dim": 512,
61
+ "projection_hidden_act": "relu",
62
+ "text_config": {
63
+ "attention_probs_dropout_prob": 0.1,
64
+ "classifier_dropout": null,
65
+ "dtype": "float32",
66
+ "fusion_hidden_size": 768,
67
+ "fusion_num_hidden_layers": 2,
68
+ "hidden_act": "gelu",
69
+ "hidden_dropout_prob": 0.1,
70
+ "hidden_size": 768,
71
+ "initializer_factor": 1.0,
72
+ "initializer_range": 0.02,
73
+ "intermediate_size": 3072,
74
+ "layer_norm_eps": 1e-12,
75
+ "max_position_embeddings": 514,
76
+ "model_type": "clap_text_model",
77
+ "num_attention_heads": 12,
78
+ "num_hidden_layers": 12,
79
+ "position_embedding_type": "absolute",
80
+ "projection_dim": 512,
81
+ "projection_hidden_act": "relu",
82
+ "projection_hidden_size": 768,
83
+ "tf_legacy_loss": false,
84
+ "type_vocab_size": 1,
85
+ "use_bfloat16": false,
86
+ "use_cache": true,
87
+ "vocab_size": 50265
88
+ },
89
+ "transformers_version": "4.57.0.dev0"
90
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "model_type": "SentenceTransformer",
3
+ "__version__": {
4
+ "sentence_transformers": "5.2.0.dev0",
5
+ "transformers": "4.57.0.dev0",
6
+ "pytorch": "2.8.0+cu128"
7
+ },
8
+ "prompts": {
9
+ "query": "",
10
+ "document": ""
11
+ },
12
+ "default_prompt_name": null,
13
+ "similarity_fn_name": "cosine"
14
+ }
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:27bd71bf31393a9b92f9789f03a41767ec315a8bb0f5769fb6dc4826f5f84081
3
+ size 614496152
modules.json ADDED
@@ -0,0 +1,8 @@
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ }
8
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "transformer_task": "feature-extraction",
3
+ "modality_config": {
4
+ "text": {
5
+ "method": "get_text_features",
6
+ "method_output_name": null
7
+ },
8
+ "audio": {
9
+ "method": "get_audio_features",
10
+ "method_output_name": null
11
+ }
12
+ },
13
+ "module_output_name": "sentence_embedding"
14
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "cls_token": {
10
+ "content": "<s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "eos_token": {
17
+ "content": "</s>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "mask_token": {
24
+ "content": "<mask>",
25
+ "lstrip": true,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "pad_token": {
31
+ "content": "<pad>",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ },
37
+ "sep_token": {
38
+ "content": "</s>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false
43
+ },
44
+ "unk_token": {
45
+ "content": "<unk>",
46
+ "lstrip": false,
47
+ "normalized": false,
48
+ "rstrip": false,
49
+ "single_word": false
50
+ }
51
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_prefix_space": false,
3
+ "added_tokens_decoder": {
4
+ "0": {
5
+ "content": "<s>",
6
+ "lstrip": false,
7
+ "normalized": false,
8
+ "rstrip": false,
9
+ "single_word": false,
10
+ "special": true
11
+ },
12
+ "1": {
13
+ "content": "<pad>",
14
+ "lstrip": false,
15
+ "normalized": false,
16
+ "rstrip": false,
17
+ "single_word": false,
18
+ "special": true
19
+ },
20
+ "2": {
21
+ "content": "</s>",
22
+ "lstrip": false,
23
+ "normalized": false,
24
+ "rstrip": false,
25
+ "single_word": false,
26
+ "special": true
27
+ },
28
+ "3": {
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false,
34
+ "special": true
35
+ },
36
+ "50264": {
37
+ "content": "<mask>",
38
+ "lstrip": true,
39
+ "normalized": false,
40
+ "rstrip": false,
41
+ "single_word": false,
42
+ "special": true
43
+ }
44
+ },
45
+ "bos_token": "<s>",
46
+ "clean_up_tokenization_spaces": false,
47
+ "cls_token": "<s>",
48
+ "eos_token": "</s>",
49
+ "errors": "replace",
50
+ "extra_special_tokens": {},
51
+ "mask_token": "<mask>",
52
+ "max_length": null,
53
+ "model_max_length": 512,
54
+ "pad_to_multiple_of": null,
55
+ "pad_token": "<pad>",
56
+ "pad_token_type_id": 0,
57
+ "padding_side": "right",
58
+ "processor_class": "ClapProcessor",
59
+ "sep_token": "</s>",
60
+ "tokenizer_class": "RobertaTokenizer",
61
+ "trim_offsets": true,
62
+ "unk_token": "<unk>"
63
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff