Add new SentenceTransformer model
Browse files- README.md +679 -0
- config.json +90 -0
- config_sentence_transformers.json +14 -0
- merges.txt +0 -0
- model.safetensors +3 -0
- modules.json +8 -0
- sentence_bert_config.json +14 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +63 -0
- vocab.json +0 -0
README.md
ADDED
|
@@ -0,0 +1,679 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
tags:
|
| 6 |
+
- sentence-transformers
|
| 7 |
+
- sentence-similarity
|
| 8 |
+
- feature-extraction
|
| 9 |
+
- dense
|
| 10 |
+
- generated_from_trainer
|
| 11 |
+
- dataset_size:132553
|
| 12 |
+
- loss:MultipleNegativesSymmetricRankingLoss
|
| 13 |
+
base_model: laion/clap-htsat-fused
|
| 14 |
+
widget:
|
| 15 |
+
- source_sentence: HE WAS OUT OF HIS MIND WITH SOMETHING HE OVERHEARD ABOUT EATING
|
| 16 |
+
PEOPLE'S FLESH AND DRINKING BLOOD WHAT'S THE GOOD OF TALKING LIKE THAT
|
| 17 |
+
sentences:
|
| 18 |
+
- NESTORIUS WHO DEPENDED ON THE NEAR APPROACH OF HIS EASTERN FRIENDS PERSISTED LIKE
|
| 19 |
+
HIS PREDECESSOR CHRYSOSTOM TO DISCLAIM THE JURISDICTION AND TO DISOBEY THE SUMMONS
|
| 20 |
+
OF HIS ENEMIES THEY HASTENED HIS TRIAL AND HIS ACCUSER PRESIDED IN THE SEAT OF
|
| 21 |
+
JUDGMENT
|
| 22 |
+
- THEN BACK I TURNED MY FACE TO THOSE HIGH THINGS WHICH MOVED THEMSELVES TOWARDS
|
| 23 |
+
US SO SEDATELY THEY HAD BEEN DISTANCED BY NEW WEDDED BRIDES
|
| 24 |
+
- THE PROGRESS OF PRESIDENT DAVIS TO THE NEW CAPITAL SET IN THE VERY FACE OF THE
|
| 25 |
+
FOE WAS TO BE ONE HUGE TRIUMPH OF FAITH AND LOYALTY
|
| 26 |
+
- source_sentence: I BELIEVE THE SERIOUSNESS OF THE AMERICANS ARISES PARTLY FROM THEIR
|
| 27 |
+
PRIDE
|
| 28 |
+
sentences:
|
| 29 |
+
- YOU HAVE BEEN TO THE HOTEL HE BURST OUT YOU HAVE SEEN CATHERINE
|
| 30 |
+
- WHAT DO YOU MEAN SIR
|
| 31 |
+
- A HARSH LAUGH FROM COMRADE OSSIPON CUT THE TIRADE DEAD SHORT IN A SUDDEN FALTERING
|
| 32 |
+
OF THE TONGUE AND A BEWILDERED UNSTEADINESS OF THE APOSTLE'S MILDLY EXALTED EYES
|
| 33 |
+
- source_sentence: BUT YOU OUGHT TO HAVE KNOWN THAT WE ARE ONLY HALF AN HOUR BEHIND
|
| 34 |
+
YOU AT SYDENHAM IN THE MATTER OF NEWS
|
| 35 |
+
sentences:
|
| 36 |
+
- DOWN BELOW IN THE QUIET NARROW STREET MEASURED FOOTSTEPS APPROACHED THE HOUSE
|
| 37 |
+
THEN DIED AWAY UNHURRIED AND FIRM AS IF THE PASSER BY HAD STARTED TO PACE OUT
|
| 38 |
+
ALL ETERNITY FROM GAS LAMP TO GAS LAMP IN A NIGHT WITHOUT END AND THE DROWSY TICKING
|
| 39 |
+
OF THE OLD CLOCK ON THE LANDING BECAME DISTINCTLY AUDIBLE IN THE BEDROOM
|
| 40 |
+
- IT WAS A SUMMER NIGHT AND THE GUESTS WERE WANDERING IN AND OUT AT WILL AND THROUGH
|
| 41 |
+
HOUSE AND GARDEN AMID LOVELY THINGS OF ALL COLORS AND ODORS
|
| 42 |
+
- IF A MAN WERE SLAIN IN BATTLE IT WAS AN OLD CUSTOM TO PLACE HIS BODY AGAINST A
|
| 43 |
+
TREE OR ROCK IN A SITTING POSITION ALWAYS FACING THE ENEMY TO INDICATE HIS UNDAUNTED
|
| 44 |
+
DEFIANCE AND BRAVERY EVEN IN DEATH
|
| 45 |
+
- source_sentence: THE MERCHANT'S DAUGHTER AT FIRST DID NOT ANSWER BUT AS HE KEPT
|
| 46 |
+
ON CALLING TO HER SHE FINALLY ASKED HIM WHAT IT WAS THAT HE WANTED
|
| 47 |
+
sentences:
|
| 48 |
+
- LODGED IN THE BRANCHES OF A PINYON TREE I THINK IT IS BUT HE DOESN'T ANSWER ME
|
| 49 |
+
- HOW ASKED TAD
|
| 50 |
+
- THE SECOND WAS AS IF HER FLESH AND BONES HAD ALL BEEN FASHIONED OUT OF EMERALD
|
| 51 |
+
THE THIRD APPEARED AS SNOW BUT NEWLY FALLEN
|
| 52 |
+
- source_sentence: THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED
|
| 53 |
+
LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE
|
| 54 |
+
INTOLERABLE THOSE ARE THE FANATICS
|
| 55 |
+
sentences:
|
| 56 |
+
- I SHALL LOCK UP ALL THE DOORS AND WINDOWS IN THE HOUSE AND THEN I SHALL GIVE YOU
|
| 57 |
+
MY LATCH KEY AND YOU CAN LET YOURSELF IN AND STAY THE NIGHT HERE THERE IS NO ONE
|
| 58 |
+
IN THE HOUSE
|
| 59 |
+
- HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN
|
| 60 |
+
INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST
|
| 61 |
+
- HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT
|
| 62 |
+
THE MONEY PERHAPS HE COULD DO IT UP HERE
|
| 63 |
+
datasets:
|
| 64 |
+
- openslr/librispeech_asr
|
| 65 |
+
pipeline_tag: sentence-similarity
|
| 66 |
+
library_name: sentence-transformers
|
| 67 |
+
metrics:
|
| 68 |
+
- cosine_accuracy@1
|
| 69 |
+
- cosine_accuracy@3
|
| 70 |
+
- cosine_accuracy@5
|
| 71 |
+
- cosine_accuracy@10
|
| 72 |
+
- cosine_precision@1
|
| 73 |
+
- cosine_precision@3
|
| 74 |
+
- cosine_precision@5
|
| 75 |
+
- cosine_precision@10
|
| 76 |
+
- cosine_recall@1
|
| 77 |
+
- cosine_recall@3
|
| 78 |
+
- cosine_recall@5
|
| 79 |
+
- cosine_recall@10
|
| 80 |
+
- cosine_ndcg@10
|
| 81 |
+
- cosine_mrr@10
|
| 82 |
+
- cosine_map@100
|
| 83 |
+
co2_eq_emissions:
|
| 84 |
+
emissions: 114.78151570511905
|
| 85 |
+
energy_consumed: 0.42889417052827883
|
| 86 |
+
source: codecarbon
|
| 87 |
+
training_type: fine-tuning
|
| 88 |
+
on_cloud: false
|
| 89 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 90 |
+
ram_total_size: 31.777088165283203
|
| 91 |
+
hours_used: 2.094
|
| 92 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
| 93 |
+
model-index:
|
| 94 |
+
- name: CLAP model trained on COCO Captions
|
| 95 |
+
results:
|
| 96 |
+
- task:
|
| 97 |
+
type: information-retrieval
|
| 98 |
+
name: Information Retrieval
|
| 99 |
+
dataset:
|
| 100 |
+
name: librispeech eval
|
| 101 |
+
type: librispeech-eval
|
| 102 |
+
metrics:
|
| 103 |
+
- type: cosine_accuracy@1
|
| 104 |
+
value: 0.108
|
| 105 |
+
name: Cosine Accuracy@1
|
| 106 |
+
- type: cosine_accuracy@3
|
| 107 |
+
value: 0.196
|
| 108 |
+
name: Cosine Accuracy@3
|
| 109 |
+
- type: cosine_accuracy@5
|
| 110 |
+
value: 0.272
|
| 111 |
+
name: Cosine Accuracy@5
|
| 112 |
+
- type: cosine_accuracy@10
|
| 113 |
+
value: 0.438
|
| 114 |
+
name: Cosine Accuracy@10
|
| 115 |
+
- type: cosine_precision@1
|
| 116 |
+
value: 0.108
|
| 117 |
+
name: Cosine Precision@1
|
| 118 |
+
- type: cosine_precision@3
|
| 119 |
+
value: 0.06533333333333333
|
| 120 |
+
name: Cosine Precision@3
|
| 121 |
+
- type: cosine_precision@5
|
| 122 |
+
value: 0.054400000000000004
|
| 123 |
+
name: Cosine Precision@5
|
| 124 |
+
- type: cosine_precision@10
|
| 125 |
+
value: 0.0438
|
| 126 |
+
name: Cosine Precision@10
|
| 127 |
+
- type: cosine_recall@1
|
| 128 |
+
value: 0.108
|
| 129 |
+
name: Cosine Recall@1
|
| 130 |
+
- type: cosine_recall@3
|
| 131 |
+
value: 0.196
|
| 132 |
+
name: Cosine Recall@3
|
| 133 |
+
- type: cosine_recall@5
|
| 134 |
+
value: 0.272
|
| 135 |
+
name: Cosine Recall@5
|
| 136 |
+
- type: cosine_recall@10
|
| 137 |
+
value: 0.438
|
| 138 |
+
name: Cosine Recall@10
|
| 139 |
+
- type: cosine_ndcg@10
|
| 140 |
+
value: 0.24322279069515917
|
| 141 |
+
name: Cosine Ndcg@10
|
| 142 |
+
- type: cosine_mrr@10
|
| 143 |
+
value: 0.18493690476190464
|
| 144 |
+
name: Cosine Mrr@10
|
| 145 |
+
- type: cosine_map@100
|
| 146 |
+
value: 0.20597911270433167
|
| 147 |
+
name: Cosine Map@100
|
| 148 |
+
- task:
|
| 149 |
+
type: information-retrieval
|
| 150 |
+
name: Information Retrieval
|
| 151 |
+
dataset:
|
| 152 |
+
name: librispeech test
|
| 153 |
+
type: librispeech-test
|
| 154 |
+
metrics:
|
| 155 |
+
- type: cosine_accuracy@1
|
| 156 |
+
value: 0.151
|
| 157 |
+
name: Cosine Accuracy@1
|
| 158 |
+
- type: cosine_accuracy@3
|
| 159 |
+
value: 0.288
|
| 160 |
+
name: Cosine Accuracy@3
|
| 161 |
+
- type: cosine_accuracy@5
|
| 162 |
+
value: 0.371
|
| 163 |
+
name: Cosine Accuracy@5
|
| 164 |
+
- type: cosine_accuracy@10
|
| 165 |
+
value: 0.518
|
| 166 |
+
name: Cosine Accuracy@10
|
| 167 |
+
- type: cosine_precision@1
|
| 168 |
+
value: 0.151
|
| 169 |
+
name: Cosine Precision@1
|
| 170 |
+
- type: cosine_precision@3
|
| 171 |
+
value: 0.096
|
| 172 |
+
name: Cosine Precision@3
|
| 173 |
+
- type: cosine_precision@5
|
| 174 |
+
value: 0.0742
|
| 175 |
+
name: Cosine Precision@5
|
| 176 |
+
- type: cosine_precision@10
|
| 177 |
+
value: 0.0518
|
| 178 |
+
name: Cosine Precision@10
|
| 179 |
+
- type: cosine_recall@1
|
| 180 |
+
value: 0.151
|
| 181 |
+
name: Cosine Recall@1
|
| 182 |
+
- type: cosine_recall@3
|
| 183 |
+
value: 0.288
|
| 184 |
+
name: Cosine Recall@3
|
| 185 |
+
- type: cosine_recall@5
|
| 186 |
+
value: 0.371
|
| 187 |
+
name: Cosine Recall@5
|
| 188 |
+
- type: cosine_recall@10
|
| 189 |
+
value: 0.518
|
| 190 |
+
name: Cosine Recall@10
|
| 191 |
+
- type: cosine_ndcg@10
|
| 192 |
+
value: 0.31319206378414244
|
| 193 |
+
name: Cosine Ndcg@10
|
| 194 |
+
- type: cosine_mrr@10
|
| 195 |
+
value: 0.25047857142857116
|
| 196 |
+
name: Cosine Mrr@10
|
| 197 |
+
- type: cosine_map@100
|
| 198 |
+
value: 0.2693786295421681
|
| 199 |
+
name: Cosine Map@100
|
| 200 |
+
---
|
| 201 |
+
|
| 202 |
+
# CLAP model trained on COCO Captions
|
| 203 |
+
|
| 204 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) on the [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) dataset. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 205 |
+
|
| 206 |
+
## Model Details
|
| 207 |
+
|
| 208 |
+
### Model Description
|
| 209 |
+
- **Model Type:** Sentence Transformer
|
| 210 |
+
- **Base model:** [laion/clap-htsat-fused](https://huggingface.co/laion/clap-htsat-fused) <!-- at revision 1d58d5192f5e4f16b57c574c7daf3d941404bd06 -->
|
| 211 |
+
- **Maximum Sequence Length:** None tokens
|
| 212 |
+
- **Output Dimensionality:** None dimensions
|
| 213 |
+
- **Similarity Function:** Cosine Similarity
|
| 214 |
+
- **Training Dataset:**
|
| 215 |
+
- [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr)
|
| 216 |
+
- **Language:** en
|
| 217 |
+
- **License:** apache-2.0
|
| 218 |
+
|
| 219 |
+
### Model Sources
|
| 220 |
+
|
| 221 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 222 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 223 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 224 |
+
|
| 225 |
+
### Full Model Architecture
|
| 226 |
+
|
| 227 |
+
```
|
| 228 |
+
SentenceTransformer(
|
| 229 |
+
(0): Transformer({'transformer_task': 'feature-extraction', 'modality_config': {'text': {'method': 'get_text_features', 'method_output_name': None}, 'audio': {'method': 'get_audio_features', 'method_output_name': None}}, 'module_output_name': 'sentence_embedding', 'architecture': 'ClapModel'})
|
| 230 |
+
)
|
| 231 |
+
```
|
| 232 |
+
|
| 233 |
+
## Usage
|
| 234 |
+
|
| 235 |
+
### Direct Usage (Sentence Transformers)
|
| 236 |
+
|
| 237 |
+
First install the Sentence Transformers library:
|
| 238 |
+
|
| 239 |
+
```bash
|
| 240 |
+
pip install -U sentence-transformers
|
| 241 |
+
```
|
| 242 |
+
|
| 243 |
+
Then you can load this model and run inference.
|
| 244 |
+
```python
|
| 245 |
+
from sentence_transformers import SentenceTransformer
|
| 246 |
+
|
| 247 |
+
# Download from the 🤗 Hub
|
| 248 |
+
model = SentenceTransformer("tomaarsen/clap-htsat-fused-librispeech")
|
| 249 |
+
# Run inference
|
| 250 |
+
sentences = [
|
| 251 |
+
'THERE ARE NATURES TOO TO WHOSE SENSE OF JUSTICE THE PRICE EXACTED LOOMS UP MONSTROUSLY ENORMOUS ODIOUS OPPRESSIVE WORRYING HUMILIATING EXTORTIONATE INTOLERABLE THOSE ARE THE FANATICS',
|
| 252 |
+
'HE BEGAN TO WISH THAT HE HAD COMPROMISED IN SOME WAY OR OTHER THAT HE HAD SENT THE MONEY PERHAPS HE COULD DO IT UP HERE',
|
| 253 |
+
'HERE THE HOLY PRELATE OF FERNS MET HIM AND RELATED A VISION IN WHICH HE HAD BEEN INSTRUCTED TO DEMAND THE ABOLITION OF THE IMPOST',
|
| 254 |
+
]
|
| 255 |
+
embeddings = model.encode(sentences)
|
| 256 |
+
print(embeddings.shape)
|
| 257 |
+
# [3, 1024]
|
| 258 |
+
|
| 259 |
+
# Get the similarity scores for the embeddings
|
| 260 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 261 |
+
print(similarities)
|
| 262 |
+
# tensor([[ 1.0000, -0.4742, -0.2719],
|
| 263 |
+
# [-0.4742, 1.0000, 0.8206],
|
| 264 |
+
# [-0.2719, 0.8206, 1.0000]])
|
| 265 |
+
```
|
| 266 |
+
|
| 267 |
+
<!--
|
| 268 |
+
### Direct Usage (Transformers)
|
| 269 |
+
|
| 270 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 271 |
+
|
| 272 |
+
</details>
|
| 273 |
+
-->
|
| 274 |
+
|
| 275 |
+
<!--
|
| 276 |
+
### Downstream Usage (Sentence Transformers)
|
| 277 |
+
|
| 278 |
+
You can finetune this model on your own dataset.
|
| 279 |
+
|
| 280 |
+
<details><summary>Click to expand</summary>
|
| 281 |
+
|
| 282 |
+
</details>
|
| 283 |
+
-->
|
| 284 |
+
|
| 285 |
+
<!--
|
| 286 |
+
### Out-of-Scope Use
|
| 287 |
+
|
| 288 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 289 |
+
-->
|
| 290 |
+
|
| 291 |
+
## Evaluation
|
| 292 |
+
|
| 293 |
+
### Metrics
|
| 294 |
+
|
| 295 |
+
#### Information Retrieval
|
| 296 |
+
|
| 297 |
+
* Datasets: `librispeech-eval` and `librispeech-test`
|
| 298 |
+
* Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
|
| 299 |
+
|
| 300 |
+
| Metric | librispeech-eval | librispeech-test |
|
| 301 |
+
|:--------------------|:-----------------|:-----------------|
|
| 302 |
+
| cosine_accuracy@1 | 0.108 | 0.151 |
|
| 303 |
+
| cosine_accuracy@3 | 0.196 | 0.288 |
|
| 304 |
+
| cosine_accuracy@5 | 0.272 | 0.371 |
|
| 305 |
+
| cosine_accuracy@10 | 0.438 | 0.518 |
|
| 306 |
+
| cosine_precision@1 | 0.108 | 0.151 |
|
| 307 |
+
| cosine_precision@3 | 0.0653 | 0.096 |
|
| 308 |
+
| cosine_precision@5 | 0.0544 | 0.0742 |
|
| 309 |
+
| cosine_precision@10 | 0.0438 | 0.0518 |
|
| 310 |
+
| cosine_recall@1 | 0.108 | 0.151 |
|
| 311 |
+
| cosine_recall@3 | 0.196 | 0.288 |
|
| 312 |
+
| cosine_recall@5 | 0.272 | 0.371 |
|
| 313 |
+
| cosine_recall@10 | 0.438 | 0.518 |
|
| 314 |
+
| **cosine_ndcg@10** | **0.2432** | **0.3132** |
|
| 315 |
+
| cosine_mrr@10 | 0.1849 | 0.2505 |
|
| 316 |
+
| cosine_map@100 | 0.206 | 0.2694 |
|
| 317 |
+
|
| 318 |
+
<!--
|
| 319 |
+
## Bias, Risks and Limitations
|
| 320 |
+
|
| 321 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 322 |
+
-->
|
| 323 |
+
|
| 324 |
+
<!--
|
| 325 |
+
### Recommendations
|
| 326 |
+
|
| 327 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 328 |
+
-->
|
| 329 |
+
|
| 330 |
+
## Training Details
|
| 331 |
+
|
| 332 |
+
### Training Dataset
|
| 333 |
+
|
| 334 |
+
#### librispeech_asr
|
| 335 |
+
|
| 336 |
+
* Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)
|
| 337 |
+
* Size: 132,553 training samples
|
| 338 |
+
* Columns: <code>audio</code> and <code>text</code>
|
| 339 |
+
* Approximate statistics based on the first 1000 samples:
|
| 340 |
+
| | audio | text |
|
| 341 |
+
|:--------|:-------------------|:-------------------------------------------------------------------------------------------------|
|
| 342 |
+
| type | dict | string |
|
| 343 |
+
| details | <ul><li></li></ul> | <ul><li>min: 20 characters</li><li>mean: 189.15 characters</li><li>max: 294 characters</li></ul> |
|
| 344 |
+
* Samples:
|
| 345 |
+
| audio | text |
|
| 346 |
+
|:-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|
| 347 |
+
| <code>{'path': '374-180298-0000.flac', 'array': array([ 6.92203816e-04, 8.04404495e-04, 8.03834875e-04, ...,<br> -3.02505396e-05, -6.59527450e-06, 1.11444592e-06]), 'sampling_rate': 48000}</code> | <code>CHAPTER SIXTEEN I MIGHT HAVE TOLD YOU OF THE BEGINNING OF THIS LIAISON IN A FEW LINES BUT I WANTED YOU TO SEE EVERY STEP BY WHICH WE CAME I TO AGREE TO WHATEVER MARGUERITE WISHED</code> |
|
| 348 |
+
| <code>{'path': '374-180298-0001.flac', 'array': array([-9.33515839e-05, -1.25754057e-04, -1.44482241e-04, ...,<br> -2.66165182e-04, -2.03228556e-04, -1.03404833e-04]), 'sampling_rate': 48000}</code> | <code>MARGUERITE TO BE UNABLE TO LIVE APART FROM ME IT WAS THE DAY AFTER THE EVENING WHEN SHE CAME TO SEE ME THAT I SENT HER MANON LESCAUT FROM THAT TIME SEEING THAT I COULD NOT CHANGE MY MISTRESS'S LIFE I CHANGED MY OWN</code> |
|
| 349 |
+
| <code>{'path': '374-180298-0002.flac', 'array': array([-2.47883319e-04, -2.91854434e-04, -2.82971043e-04, ...,<br> -1.43931946e-04, -1.17829914e-04, -6.32331648e-05]), 'sampling_rate': 48000}</code> | <code>I WISHED ABOVE ALL NOT TO LEAVE MYSELF TIME TO THINK OVER THE POSITION I HAD ACCEPTED FOR IN SPITE OF MYSELF IT WAS A GREAT DISTRESS TO ME THUS MY LIFE GENERALLY SO CALM</code> |
|
| 350 |
+
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
| 351 |
+
```json
|
| 352 |
+
{
|
| 353 |
+
"scale": 20.0,
|
| 354 |
+
"similarity_fct": "cos_sim",
|
| 355 |
+
"gather_across_devices": false
|
| 356 |
+
}
|
| 357 |
+
```
|
| 358 |
+
|
| 359 |
+
### Evaluation Dataset
|
| 360 |
+
|
| 361 |
+
#### librispeech_asr
|
| 362 |
+
|
| 363 |
+
* Dataset: [librispeech_asr](https://huggingface.co/datasets/openslr/librispeech_asr) at [71cacbf](https://huggingface.co/datasets/openslr/librispeech_asr/tree/71cacbfb7e2354c4226d01e70d77d5fca3d04ba1)
|
| 364 |
+
* Size: 1,000 evaluation samples
|
| 365 |
+
* Columns: <code>audio</code> and <code>text</code>
|
| 366 |
+
* Approximate statistics based on the first 1000 samples:
|
| 367 |
+
| | audio | text |
|
| 368 |
+
|:--------|:-------------------|:------------------------------------------------------------------------------------------------|
|
| 369 |
+
| type | dict | string |
|
| 370 |
+
| details | <ul><li></li></ul> | <ul><li>min: 8 characters</li><li>mean: 104.62 characters</li><li>max: 516 characters</li></ul> |
|
| 371 |
+
* Samples:
|
| 372 |
+
| audio | text |
|
| 373 |
+
|:--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------------------------------------------------|
|
| 374 |
+
| <code>{'path': '2277-149896-0000.flac', 'array': array([ 0.00179741, 0.00170625, 0.00120927, ..., -0.00144462,<br> -0.00102732, -0.00048062]), 'sampling_rate': 48000}</code> | <code>HE WAS IN A FEVERED STATE OF MIND OWING TO THE BLIGHT HIS WIFE'S ACTION THREATENED TO CAST UPON HIS ENTIRE FUTURE</code> |
|
| 375 |
+
| <code>{'path': '2277-149896-0001.flac', 'array': array([ 0.00111104, 0.00081758, 0.00021103, ..., -0.00138193,<br> -0.0009173 , -0.00041702]), 'sampling_rate': 48000}</code> | <code>HE WOULD HAVE TO PAY HER THE MONEY WHICH SHE WOULD NOW REGULARLY DEMAND OR THERE WOULD BE TROUBLE IT DID NOT MATTER WHAT HE DID</code> |
|
| 376 |
+
| <code>{'path': '2277-149896-0002.flac', 'array': array([0.00080266, 0.00088462, 0.00083408, ..., 0.00105488, 0.00083673,<br> 0.00043296]), 'sampling_rate': 48000}</code> | <code>HURSTWOOD WALKED THE FLOOR MENTALLY ARRANGING THE CHIEF POINTS OF HIS SITUATION</code> |
|
| 377 |
+
* Loss: [<code>MultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativessymmetricrankingloss) with these parameters:
|
| 378 |
+
```json
|
| 379 |
+
{
|
| 380 |
+
"scale": 20.0,
|
| 381 |
+
"similarity_fct": "cos_sim",
|
| 382 |
+
"gather_across_devices": false
|
| 383 |
+
}
|
| 384 |
+
```
|
| 385 |
+
|
| 386 |
+
### Training Hyperparameters
|
| 387 |
+
#### Non-Default Hyperparameters
|
| 388 |
+
|
| 389 |
+
- `eval_strategy`: steps
|
| 390 |
+
- `per_device_train_batch_size`: 16
|
| 391 |
+
- `per_device_eval_batch_size`: 16
|
| 392 |
+
- `learning_rate`: 2e-05
|
| 393 |
+
- `num_train_epochs`: 1
|
| 394 |
+
- `warmup_ratio`: 0.1
|
| 395 |
+
- `bf16`: True
|
| 396 |
+
- `batch_sampler`: no_duplicates
|
| 397 |
+
|
| 398 |
+
#### All Hyperparameters
|
| 399 |
+
<details><summary>Click to expand</summary>
|
| 400 |
+
|
| 401 |
+
- `overwrite_output_dir`: False
|
| 402 |
+
- `do_predict`: False
|
| 403 |
+
- `eval_strategy`: steps
|
| 404 |
+
- `prediction_loss_only`: True
|
| 405 |
+
- `per_device_train_batch_size`: 16
|
| 406 |
+
- `per_device_eval_batch_size`: 16
|
| 407 |
+
- `gradient_accumulation_steps`: 1
|
| 408 |
+
- `eval_accumulation_steps`: None
|
| 409 |
+
- `torch_empty_cache_steps`: None
|
| 410 |
+
- `learning_rate`: 2e-05
|
| 411 |
+
- `weight_decay`: 0.0
|
| 412 |
+
- `adam_beta1`: 0.9
|
| 413 |
+
- `adam_beta2`: 0.999
|
| 414 |
+
- `adam_epsilon`: 1e-08
|
| 415 |
+
- `max_grad_norm`: 1.0
|
| 416 |
+
- `num_train_epochs`: 1
|
| 417 |
+
- `max_steps`: -1
|
| 418 |
+
- `lr_scheduler_type`: linear
|
| 419 |
+
- `lr_scheduler_kwargs`: {}
|
| 420 |
+
- `warmup_ratio`: 0.1
|
| 421 |
+
- `warmup_steps`: 0
|
| 422 |
+
- `log_level`: passive
|
| 423 |
+
- `log_level_replica`: warning
|
| 424 |
+
- `log_on_each_node`: True
|
| 425 |
+
- `logging_nan_inf_filter`: True
|
| 426 |
+
- `save_safetensors`: True
|
| 427 |
+
- `save_on_each_node`: False
|
| 428 |
+
- `save_only_model`: False
|
| 429 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 430 |
+
- `use_cpu`: False
|
| 431 |
+
- `seed`: 42
|
| 432 |
+
- `data_seed`: None
|
| 433 |
+
- `jit_mode_eval`: False
|
| 434 |
+
- `bf16`: True
|
| 435 |
+
- `fp16`: False
|
| 436 |
+
- `half_precision_backend`: None
|
| 437 |
+
- `bf16_full_eval`: False
|
| 438 |
+
- `fp16_full_eval`: False
|
| 439 |
+
- `tf32`: None
|
| 440 |
+
- `local_rank`: 0
|
| 441 |
+
- `ddp_backend`: None
|
| 442 |
+
- `tpu_num_cores`: None
|
| 443 |
+
- `debug`: []
|
| 444 |
+
- `dataloader_drop_last`: False
|
| 445 |
+
- `dataloader_num_workers`: 0
|
| 446 |
+
- `dataloader_prefetch_factor`: None
|
| 447 |
+
- `past_index`: -1
|
| 448 |
+
- `disable_tqdm`: False
|
| 449 |
+
- `remove_unused_columns`: True
|
| 450 |
+
- `label_names`: None
|
| 451 |
+
- `load_best_model_at_end`: False
|
| 452 |
+
- `ignore_data_skip`: False
|
| 453 |
+
- `fsdp`: []
|
| 454 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 455 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 456 |
+
- `parallelism_config`: None
|
| 457 |
+
- `deepspeed`: None
|
| 458 |
+
- `label_smoothing_factor`: 0.0
|
| 459 |
+
- `optim`: adamw_torch_fused
|
| 460 |
+
- `optim_args`: None
|
| 461 |
+
- `group_by_length`: False
|
| 462 |
+
- `length_column_name`: length
|
| 463 |
+
- `ddp_find_unused_parameters`: None
|
| 464 |
+
- `ddp_bucket_cap_mb`: None
|
| 465 |
+
- `ddp_broadcast_buffers`: False
|
| 466 |
+
- `dataloader_pin_memory`: True
|
| 467 |
+
- `dataloader_persistent_workers`: False
|
| 468 |
+
- `skip_memory_metrics`: True
|
| 469 |
+
- `use_legacy_prediction_loop`: False
|
| 470 |
+
- `push_to_hub`: False
|
| 471 |
+
- `resume_from_checkpoint`: None
|
| 472 |
+
- `hub_model_id`: None
|
| 473 |
+
- `hub_strategy`: every_save
|
| 474 |
+
- `hub_private_repo`: None
|
| 475 |
+
- `hub_always_push`: False
|
| 476 |
+
- `hub_revision`: None
|
| 477 |
+
- `gradient_checkpointing`: False
|
| 478 |
+
- `gradient_checkpointing_kwargs`: None
|
| 479 |
+
- `include_for_metrics`: []
|
| 480 |
+
- `eval_do_concat_batches`: True
|
| 481 |
+
- `mp_parameters`:
|
| 482 |
+
- `auto_find_batch_size`: False
|
| 483 |
+
- `full_determinism`: False
|
| 484 |
+
- `ray_scope`: last
|
| 485 |
+
- `ddp_timeout`: 1800
|
| 486 |
+
- `torch_compile`: False
|
| 487 |
+
- `torch_compile_backend`: None
|
| 488 |
+
- `torch_compile_mode`: None
|
| 489 |
+
- `include_tokens_per_second`: False
|
| 490 |
+
- `include_num_input_tokens_seen`: no
|
| 491 |
+
- `neftune_noise_alpha`: None
|
| 492 |
+
- `optim_target_modules`: None
|
| 493 |
+
- `batch_eval_metrics`: False
|
| 494 |
+
- `eval_on_start`: False
|
| 495 |
+
- `use_liger_kernel`: False
|
| 496 |
+
- `liger_kernel_config`: None
|
| 497 |
+
- `eval_use_gather_object`: False
|
| 498 |
+
- `average_tokens_across_devices`: True
|
| 499 |
+
- `prompts`: None
|
| 500 |
+
- `batch_sampler`: no_duplicates
|
| 501 |
+
- `multi_dataset_batch_sampler`: proportional
|
| 502 |
+
- `router_mapping`: {}
|
| 503 |
+
- `learning_rate_mapping`: {}
|
| 504 |
+
|
| 505 |
+
</details>
|
| 506 |
+
|
| 507 |
+
### Training Logs
|
| 508 |
+
<details><summary>Click to expand</summary>
|
| 509 |
+
|
| 510 |
+
| Epoch | Step | Training Loss | Validation Loss | librispeech-eval_cosine_ndcg@10 | librispeech-test_cosine_ndcg@10 |
|
| 511 |
+
|:------:|:----:|:-------------:|:---------------:|:-------------------------------:|:-------------------------------:|
|
| 512 |
+
| -1 | -1 | - | - | 0.0114 | - |
|
| 513 |
+
| 0.0100 | 83 | 3.5908 | - | - | - |
|
| 514 |
+
| 0.0200 | 166 | 2.5371 | - | - | - |
|
| 515 |
+
| 0.0301 | 249 | 2.1799 | - | - | - |
|
| 516 |
+
| 0.0401 | 332 | 2.0415 | - | - | - |
|
| 517 |
+
| 0.0501 | 415 | 1.9394 | - | - | - |
|
| 518 |
+
| 0.0601 | 498 | 1.8167 | - | - | - |
|
| 519 |
+
| 0.0701 | 581 | 1.7589 | - | - | - |
|
| 520 |
+
| 0.0801 | 664 | 1.7262 | - | - | - |
|
| 521 |
+
| 0.0902 | 747 | 1.7585 | - | - | - |
|
| 522 |
+
| 0.1001 | 829 | - | 1.5991 | 0.0335 | - |
|
| 523 |
+
| 0.1002 | 830 | 1.7521 | - | - | - |
|
| 524 |
+
| 0.1102 | 913 | 1.6822 | - | - | - |
|
| 525 |
+
| 0.1202 | 996 | 1.6176 | - | - | - |
|
| 526 |
+
| 0.1302 | 1079 | 1.6391 | - | - | - |
|
| 527 |
+
| 0.1403 | 1162 | 1.6931 | - | - | - |
|
| 528 |
+
| 0.1503 | 1245 | 1.4626 | - | - | - |
|
| 529 |
+
| 0.1603 | 1328 | 1.4305 | - | - | - |
|
| 530 |
+
| 0.1703 | 1411 | 1.4998 | - | - | - |
|
| 531 |
+
| 0.1803 | 1494 | 1.4073 | - | - | - |
|
| 532 |
+
| 0.1903 | 1577 | 1.3843 | - | - | - |
|
| 533 |
+
| 0.2001 | 1658 | - | 1.2227 | 0.0925 | - |
|
| 534 |
+
| 0.2004 | 1660 | 1.3371 | - | - | - |
|
| 535 |
+
| 0.2104 | 1743 | 1.3908 | - | - | - |
|
| 536 |
+
| 0.2204 | 1826 | 1.2835 | - | - | - |
|
| 537 |
+
| 0.2304 | 1909 | 1.3203 | - | - | - |
|
| 538 |
+
| 0.2404 | 1992 | 1.2549 | - | - | - |
|
| 539 |
+
| 0.2505 | 2075 | 1.2384 | - | - | - |
|
| 540 |
+
| 0.2605 | 2158 | 1.2189 | - | - | - |
|
| 541 |
+
| 0.2705 | 2241 | 1.1658 | - | - | - |
|
| 542 |
+
| 0.2805 | 2324 | 1.1771 | - | - | - |
|
| 543 |
+
| 0.2905 | 2407 | 1.2068 | - | - | - |
|
| 544 |
+
| 0.3002 | 2487 | - | 1.0471 | 0.1318 | - |
|
| 545 |
+
| 0.3005 | 2490 | 1.1708 | - | - | - |
|
| 546 |
+
| 0.3106 | 2573 | 1.1389 | - | - | - |
|
| 547 |
+
| 0.3206 | 2656 | 1.0786 | - | - | - |
|
| 548 |
+
| 0.3306 | 2739 | 1.0792 | - | - | - |
|
| 549 |
+
| 0.3406 | 2822 | 1.0562 | - | - | - |
|
| 550 |
+
| 0.3506 | 2905 | 0.98 | - | - | - |
|
| 551 |
+
| 0.3607 | 2988 | 1.1153 | - | - | - |
|
| 552 |
+
| 0.3707 | 3071 | 0.9987 | - | - | - |
|
| 553 |
+
| 0.3807 | 3154 | 1.0002 | - | - | - |
|
| 554 |
+
| 0.3907 | 3237 | 1.0017 | - | - | - |
|
| 555 |
+
| 0.4002 | 3316 | - | 0.8901 | 0.1589 | - |
|
| 556 |
+
| 0.4007 | 3320 | 0.9364 | - | - | - |
|
| 557 |
+
| 0.4107 | 3403 | 0.9394 | - | - | - |
|
| 558 |
+
| 0.4208 | 3486 | 0.9459 | - | - | - |
|
| 559 |
+
| 0.4308 | 3569 | 0.9604 | - | - | - |
|
| 560 |
+
| 0.4408 | 3652 | 0.9491 | - | - | - |
|
| 561 |
+
| 0.4508 | 3735 | 0.9295 | - | - | - |
|
| 562 |
+
| 0.4608 | 3818 | 0.9508 | - | - | - |
|
| 563 |
+
| 0.4709 | 3901 | 0.9122 | - | - | - |
|
| 564 |
+
| 0.4809 | 3984 | 0.8483 | - | - | - |
|
| 565 |
+
| 0.4909 | 4067 | 0.8443 | - | - | - |
|
| 566 |
+
| 0.5003 | 4145 | - | 0.7955 | 0.1908 | - |
|
| 567 |
+
| 0.5009 | 4150 | 0.8838 | - | - | - |
|
| 568 |
+
| 0.5109 | 4233 | 0.8367 | - | - | - |
|
| 569 |
+
| 0.5209 | 4316 | 0.8516 | - | - | - |
|
| 570 |
+
| 0.5310 | 4399 | 0.8112 | - | - | - |
|
| 571 |
+
| 0.5410 | 4482 | 0.8368 | - | - | - |
|
| 572 |
+
| 0.5510 | 4565 | 0.873 | - | - | - |
|
| 573 |
+
| 0.5610 | 4648 | 0.8156 | - | - | - |
|
| 574 |
+
| 0.5710 | 4731 | 0.8864 | - | - | - |
|
| 575 |
+
| 0.5811 | 4814 | 0.8278 | - | - | - |
|
| 576 |
+
| 0.5911 | 4897 | 0.8006 | - | - | - |
|
| 577 |
+
| 0.6004 | 4974 | - | 0.7649 | 0.1874 | - |
|
| 578 |
+
| 0.6011 | 4980 | 0.8199 | - | - | - |
|
| 579 |
+
| 0.6111 | 5063 | 0.7475 | - | - | - |
|
| 580 |
+
| 0.6211 | 5146 | 0.7345 | - | - | - |
|
| 581 |
+
| 0.6311 | 5229 | 0.7301 | - | - | - |
|
| 582 |
+
| 0.6412 | 5312 | 0.774 | - | - | - |
|
| 583 |
+
| 0.6512 | 5395 | 0.7391 | - | - | - |
|
| 584 |
+
| 0.6612 | 5478 | 0.6929 | - | - | - |
|
| 585 |
+
| 0.6712 | 5561 | 0.7218 | - | - | - |
|
| 586 |
+
| 0.6812 | 5644 | 0.7071 | - | - | - |
|
| 587 |
+
| 0.6912 | 5727 | 0.7024 | - | - | - |
|
| 588 |
+
| 0.7004 | 5803 | - | 0.6712 | 0.2419 | - |
|
| 589 |
+
| 0.7013 | 5810 | 0.6428 | - | - | - |
|
| 590 |
+
| 0.7113 | 5893 | 0.6719 | - | - | - |
|
| 591 |
+
| 0.7213 | 5976 | 0.6972 | - | - | - |
|
| 592 |
+
| 0.7313 | 6059 | 0.7043 | - | - | - |
|
| 593 |
+
| 0.7413 | 6142 | 0.663 | - | - | - |
|
| 594 |
+
| 0.7514 | 6225 | 0.6963 | - | - | - |
|
| 595 |
+
| 0.7614 | 6308 | 0.6591 | - | - | - |
|
| 596 |
+
| 0.7714 | 6391 | 0.6736 | - | - | - |
|
| 597 |
+
| 0.7814 | 6474 | 0.7033 | - | - | - |
|
| 598 |
+
| 0.7914 | 6557 | 0.6314 | - | - | - |
|
| 599 |
+
| 0.8005 | 6632 | - | 0.6806 | 0.2319 | - |
|
| 600 |
+
| 0.8014 | 6640 | 0.6508 | - | - | - |
|
| 601 |
+
| 0.8115 | 6723 | 0.6532 | - | - | - |
|
| 602 |
+
| 0.8215 | 6806 | 0.6788 | - | - | - |
|
| 603 |
+
| 0.8315 | 6889 | 0.6038 | - | - | - |
|
| 604 |
+
| 0.8415 | 6972 | 0.658 | - | - | - |
|
| 605 |
+
| 0.8515 | 7055 | 0.656 | - | - | - |
|
| 606 |
+
| 0.8616 | 7138 | 0.6533 | - | - | - |
|
| 607 |
+
| 0.8716 | 7221 | 0.601 | - | - | - |
|
| 608 |
+
| 0.8816 | 7304 | 0.6243 | - | - | - |
|
| 609 |
+
| 0.8916 | 7387 | 0.6315 | - | - | - |
|
| 610 |
+
| 0.9005 | 7461 | - | 0.6526 | 0.2432 | - |
|
| 611 |
+
| 0.9016 | 7470 | 0.5707 | - | - | - |
|
| 612 |
+
| 0.9116 | 7553 | 0.5778 | - | - | - |
|
| 613 |
+
| 0.9217 | 7636 | 0.5736 | - | - | - |
|
| 614 |
+
| 0.9317 | 7719 | 0.615 | - | - | - |
|
| 615 |
+
| 0.9417 | 7802 | 0.5756 | - | - | - |
|
| 616 |
+
| 0.9517 | 7885 | 0.5724 | - | - | - |
|
| 617 |
+
| 0.9617 | 7968 | 0.5678 | - | - | - |
|
| 618 |
+
| 0.9718 | 8051 | 0.5661 | - | - | - |
|
| 619 |
+
| 0.9818 | 8134 | 0.6162 | - | - | - |
|
| 620 |
+
| 0.9918 | 8217 | 0.5766 | - | - | - |
|
| 621 |
+
| -1 | -1 | - | - | - | 0.3132 |
|
| 622 |
+
|
| 623 |
+
</details>
|
| 624 |
+
|
| 625 |
+
### Environmental Impact
|
| 626 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
| 627 |
+
- **Energy Consumed**: 0.429 kWh
|
| 628 |
+
- **Carbon Emitted**: 0.115 kg of CO2
|
| 629 |
+
- **Hours Used**: 2.094 hours
|
| 630 |
+
|
| 631 |
+
### Training Hardware
|
| 632 |
+
- **On Cloud**: No
|
| 633 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
| 634 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 635 |
+
- **RAM Size**: 31.78 GB
|
| 636 |
+
|
| 637 |
+
### Framework Versions
|
| 638 |
+
- Python: 3.11.6
|
| 639 |
+
- Sentence Transformers: 5.2.0.dev0
|
| 640 |
+
- Transformers: 4.57.0.dev0
|
| 641 |
+
- PyTorch: 2.8.0+cu128
|
| 642 |
+
- Accelerate: 1.6.0
|
| 643 |
+
- Datasets: 3.6.0
|
| 644 |
+
- Tokenizers: 0.22.1
|
| 645 |
+
|
| 646 |
+
## Citation
|
| 647 |
+
|
| 648 |
+
### BibTeX
|
| 649 |
+
|
| 650 |
+
#### Sentence Transformers
|
| 651 |
+
```bibtex
|
| 652 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 653 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 654 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 655 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 656 |
+
month = "11",
|
| 657 |
+
year = "2019",
|
| 658 |
+
publisher = "Association for Computational Linguistics",
|
| 659 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 660 |
+
}
|
| 661 |
+
```
|
| 662 |
+
|
| 663 |
+
<!--
|
| 664 |
+
## Glossary
|
| 665 |
+
|
| 666 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 667 |
+
-->
|
| 668 |
+
|
| 669 |
+
<!--
|
| 670 |
+
## Model Card Authors
|
| 671 |
+
|
| 672 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 673 |
+
-->
|
| 674 |
+
|
| 675 |
+
<!--
|
| 676 |
+
## Model Card Contact
|
| 677 |
+
|
| 678 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 679 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"architectures": [
|
| 3 |
+
"ClapModel"
|
| 4 |
+
],
|
| 5 |
+
"audio_config": {
|
| 6 |
+
"aff_block_r": 4,
|
| 7 |
+
"attention_probs_dropout_prob": 0.0,
|
| 8 |
+
"depths": [
|
| 9 |
+
2,
|
| 10 |
+
2,
|
| 11 |
+
6,
|
| 12 |
+
2
|
| 13 |
+
],
|
| 14 |
+
"drop_path_rate": 0.0,
|
| 15 |
+
"dtype": "float32",
|
| 16 |
+
"enable_fusion": true,
|
| 17 |
+
"enable_patch_fusion": true,
|
| 18 |
+
"enable_patch_layer_norm": true,
|
| 19 |
+
"flatten_patch_embeds": true,
|
| 20 |
+
"fusion_num_hidden_layers": 2,
|
| 21 |
+
"fusion_type": null,
|
| 22 |
+
"hidden_act": "gelu",
|
| 23 |
+
"hidden_dropout_prob": 0.1,
|
| 24 |
+
"hidden_size": 768,
|
| 25 |
+
"initializer_factor": 1.0,
|
| 26 |
+
"layer_norm_eps": 1e-05,
|
| 27 |
+
"mlp_ratio": 4.0,
|
| 28 |
+
"model_type": "clap_audio_model",
|
| 29 |
+
"num_attention_heads": [
|
| 30 |
+
4,
|
| 31 |
+
8,
|
| 32 |
+
16,
|
| 33 |
+
32
|
| 34 |
+
],
|
| 35 |
+
"num_classes": 527,
|
| 36 |
+
"num_hidden_layers": 4,
|
| 37 |
+
"num_mel_bins": 64,
|
| 38 |
+
"patch_embed_input_channels": 1,
|
| 39 |
+
"patch_embeds_hidden_size": 96,
|
| 40 |
+
"patch_size": 4,
|
| 41 |
+
"patch_stride": [
|
| 42 |
+
4,
|
| 43 |
+
4
|
| 44 |
+
],
|
| 45 |
+
"projection_dim": 512,
|
| 46 |
+
"projection_hidden_act": "relu",
|
| 47 |
+
"projection_hidden_size": 768,
|
| 48 |
+
"qkv_bias": true,
|
| 49 |
+
"spec_size": 256,
|
| 50 |
+
"tf_legacy_loss": false,
|
| 51 |
+
"use_bfloat16": false,
|
| 52 |
+
"window_size": 8
|
| 53 |
+
},
|
| 54 |
+
"dtype": "float32",
|
| 55 |
+
"hidden_size": 768,
|
| 56 |
+
"initializer_factor": 1.0,
|
| 57 |
+
"logit_scale_init_value": 14.285714285714285,
|
| 58 |
+
"model_type": "clap",
|
| 59 |
+
"num_hidden_layers": 16,
|
| 60 |
+
"projection_dim": 512,
|
| 61 |
+
"projection_hidden_act": "relu",
|
| 62 |
+
"text_config": {
|
| 63 |
+
"attention_probs_dropout_prob": 0.1,
|
| 64 |
+
"classifier_dropout": null,
|
| 65 |
+
"dtype": "float32",
|
| 66 |
+
"fusion_hidden_size": 768,
|
| 67 |
+
"fusion_num_hidden_layers": 2,
|
| 68 |
+
"hidden_act": "gelu",
|
| 69 |
+
"hidden_dropout_prob": 0.1,
|
| 70 |
+
"hidden_size": 768,
|
| 71 |
+
"initializer_factor": 1.0,
|
| 72 |
+
"initializer_range": 0.02,
|
| 73 |
+
"intermediate_size": 3072,
|
| 74 |
+
"layer_norm_eps": 1e-12,
|
| 75 |
+
"max_position_embeddings": 514,
|
| 76 |
+
"model_type": "clap_text_model",
|
| 77 |
+
"num_attention_heads": 12,
|
| 78 |
+
"num_hidden_layers": 12,
|
| 79 |
+
"position_embedding_type": "absolute",
|
| 80 |
+
"projection_dim": 512,
|
| 81 |
+
"projection_hidden_act": "relu",
|
| 82 |
+
"projection_hidden_size": 768,
|
| 83 |
+
"tf_legacy_loss": false,
|
| 84 |
+
"type_vocab_size": 1,
|
| 85 |
+
"use_bfloat16": false,
|
| 86 |
+
"use_cache": true,
|
| 87 |
+
"vocab_size": 50265
|
| 88 |
+
},
|
| 89 |
+
"transformers_version": "4.57.0.dev0"
|
| 90 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"model_type": "SentenceTransformer",
|
| 3 |
+
"__version__": {
|
| 4 |
+
"sentence_transformers": "5.2.0.dev0",
|
| 5 |
+
"transformers": "4.57.0.dev0",
|
| 6 |
+
"pytorch": "2.8.0+cu128"
|
| 7 |
+
},
|
| 8 |
+
"prompts": {
|
| 9 |
+
"query": "",
|
| 10 |
+
"document": ""
|
| 11 |
+
},
|
| 12 |
+
"default_prompt_name": null,
|
| 13 |
+
"similarity_fn_name": "cosine"
|
| 14 |
+
}
|
merges.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:27bd71bf31393a9b92f9789f03a41767ec315a8bb0f5769fb6dc4826f5f84081
|
| 3 |
+
size 614496152
|
modules.json
ADDED
|
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
}
|
| 8 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"transformer_task": "feature-extraction",
|
| 3 |
+
"modality_config": {
|
| 4 |
+
"text": {
|
| 5 |
+
"method": "get_text_features",
|
| 6 |
+
"method_output_name": null
|
| 7 |
+
},
|
| 8 |
+
"audio": {
|
| 9 |
+
"method": "get_audio_features",
|
| 10 |
+
"method_output_name": null
|
| 11 |
+
}
|
| 12 |
+
},
|
| 13 |
+
"module_output_name": "sentence_embedding"
|
| 14 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": false,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "<unk>",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"add_prefix_space": false,
|
| 3 |
+
"added_tokens_decoder": {
|
| 4 |
+
"0": {
|
| 5 |
+
"content": "<s>",
|
| 6 |
+
"lstrip": false,
|
| 7 |
+
"normalized": false,
|
| 8 |
+
"rstrip": false,
|
| 9 |
+
"single_word": false,
|
| 10 |
+
"special": true
|
| 11 |
+
},
|
| 12 |
+
"1": {
|
| 13 |
+
"content": "<pad>",
|
| 14 |
+
"lstrip": false,
|
| 15 |
+
"normalized": false,
|
| 16 |
+
"rstrip": false,
|
| 17 |
+
"single_word": false,
|
| 18 |
+
"special": true
|
| 19 |
+
},
|
| 20 |
+
"2": {
|
| 21 |
+
"content": "</s>",
|
| 22 |
+
"lstrip": false,
|
| 23 |
+
"normalized": false,
|
| 24 |
+
"rstrip": false,
|
| 25 |
+
"single_word": false,
|
| 26 |
+
"special": true
|
| 27 |
+
},
|
| 28 |
+
"3": {
|
| 29 |
+
"content": "<unk>",
|
| 30 |
+
"lstrip": false,
|
| 31 |
+
"normalized": false,
|
| 32 |
+
"rstrip": false,
|
| 33 |
+
"single_word": false,
|
| 34 |
+
"special": true
|
| 35 |
+
},
|
| 36 |
+
"50264": {
|
| 37 |
+
"content": "<mask>",
|
| 38 |
+
"lstrip": true,
|
| 39 |
+
"normalized": false,
|
| 40 |
+
"rstrip": false,
|
| 41 |
+
"single_word": false,
|
| 42 |
+
"special": true
|
| 43 |
+
}
|
| 44 |
+
},
|
| 45 |
+
"bos_token": "<s>",
|
| 46 |
+
"clean_up_tokenization_spaces": false,
|
| 47 |
+
"cls_token": "<s>",
|
| 48 |
+
"eos_token": "</s>",
|
| 49 |
+
"errors": "replace",
|
| 50 |
+
"extra_special_tokens": {},
|
| 51 |
+
"mask_token": "<mask>",
|
| 52 |
+
"max_length": null,
|
| 53 |
+
"model_max_length": 512,
|
| 54 |
+
"pad_to_multiple_of": null,
|
| 55 |
+
"pad_token": "<pad>",
|
| 56 |
+
"pad_token_type_id": 0,
|
| 57 |
+
"padding_side": "right",
|
| 58 |
+
"processor_class": "ClapProcessor",
|
| 59 |
+
"sep_token": "</s>",
|
| 60 |
+
"tokenizer_class": "RobertaTokenizer",
|
| 61 |
+
"trim_offsets": true,
|
| 62 |
+
"unk_token": "<unk>"
|
| 63 |
+
}
|
vocab.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|