Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,112 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
datasets:
|
| 4 |
+
- hiyouga/glaive-function-calling-v2-sharegpt
|
| 5 |
+
language:
|
| 6 |
+
- en
|
| 7 |
+
library_name: transformers
|
| 8 |
+
tags:
|
| 9 |
+
- llama-factory
|
| 10 |
+
- unsloth
|
| 11 |
+
base_model: h2oai/h2o-danube2-1.8b-base
|
| 12 |
+
---
|
| 13 |
+
|
| 14 |
+
# h2o-danube2 with ChatML template
|
| 15 |
+
|
| 16 |
+
This is a [BAdam](https://arxiv.org/abs/2404.02827 "BAdam: A Memory Efficient Full Parameter Optimization Method for Large Language Models") and [LoRA+](https://arxiv.org/abs/2402.12354 "LoRA+: Efficient Low Rank Adaptation of Large Models") fine-tuned danube2 base model. It uses the ChatML template and was trained on the [glaive-function-calling-v2](https://huggingface.co/datasets/glaiveai/glaive-function-calling-v2) dataset from [GlaiveAI](https://huggingface.co/glaiveai) that has been converted to [ShareGPT](https://huggingface.co/datasets/hiyouga/glaive-function-calling-v2-sharegpt) by [hiyouga](https://huggingface.co/hiyouga) of [LLama-Factory](https://github.com/hiyouga/LLaMA-Factory) fame.
|
| 17 |
+
|
| 18 |
+
## Template
|
| 19 |
+
|
| 20 |
+
### ChatML
|
| 21 |
+
```jinja2
|
| 22 |
+
<|im_start>system
|
| 23 |
+
{{system}}
|
| 24 |
+
<tools>
|
| 25 |
+
{{json_format_tools}}
|
| 26 |
+
</tools>
|
| 27 |
+
<|im_end|>
|
| 28 |
+
<|im_start>user
|
| 29 |
+
{{instruction}}<|im_end|>
|
| 30 |
+
<|im_start>assistant
|
| 31 |
+
<tool_call>
|
| 32 |
+
{{tool_call}}
|
| 33 |
+
</tool_call><|im_end>
|
| 34 |
+
<|im_start>tool
|
| 35 |
+
<tool_response>
|
| 36 |
+
{{response}}
|
| 37 |
+
</tool_response><|im_end>
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
### LLama-Factory
|
| 41 |
+
```python
|
| 42 |
+
_register_template(
|
| 43 |
+
name="hermes_chatml",
|
| 44 |
+
format_user=StringFormatter(slots=["<|im_start|>user\n{{content}}<|im_end|>\n<|im_start|>assistant\n"]),
|
| 45 |
+
format_assistant=StringFormatter(slots=["{{content}}<|im_end|>\n"]),
|
| 46 |
+
format_system=StringFormatter(slots=["<|im_start|>system\n{{content}}<|im_end|>\n"]),
|
| 47 |
+
format_function=FunctionFormatter(slots=["<tool_call>\n{\"name\":\"{{name}}\", \"arguments\":{{arguments}}}\n</tool_call><|im_end|>\n"]),
|
| 48 |
+
format_observation=StringFormatter(slots=["<|im_start|>tool\n<tool_response>\n{{content}}\n</tool_response><|im_end|>\n<|im_start|>assistant\n"]),
|
| 49 |
+
format_tools=ToolFormatter(tool_format="chatml"),
|
| 50 |
+
stop_words=["<|im_end|>"],
|
| 51 |
+
)
|
| 52 |
+
```
|
| 53 |
+
|
| 54 |
+
## BAdam config
|
| 55 |
+
|
| 56 |
+
```yaml
|
| 57 |
+
### model
|
| 58 |
+
model_name_or_path: danube2-base-chatml
|
| 59 |
+
|
| 60 |
+
### method
|
| 61 |
+
stage: sft
|
| 62 |
+
do_train: true
|
| 63 |
+
finetuning_type: full
|
| 64 |
+
use_badam: true
|
| 65 |
+
badam_switch_mode: ascending
|
| 66 |
+
badam_switch_interval: 50
|
| 67 |
+
badam_verbose: 1
|
| 68 |
+
badam_start_block: 5
|
| 69 |
+
seed: 404
|
| 70 |
+
|
| 71 |
+
### dataset
|
| 72 |
+
dataset: glaive_toolcall_100k
|
| 73 |
+
template: hermes_chatml
|
| 74 |
+
cutoff_len: 8192
|
| 75 |
+
overwrite_cache: false
|
| 76 |
+
preprocessing_num_workers: 12
|
| 77 |
+
|
| 78 |
+
### output
|
| 79 |
+
output_dir: glaive-tool-chatml-badam
|
| 80 |
+
logging_steps: 5
|
| 81 |
+
save_steps: 1
|
| 82 |
+
save_strategy: epoch
|
| 83 |
+
plot_loss: true
|
| 84 |
+
overwrite_output_dir: false
|
| 85 |
+
|
| 86 |
+
### train
|
| 87 |
+
per_device_train_batch_size: 2
|
| 88 |
+
gradient_accumulation_steps: 8
|
| 89 |
+
learning_rate: 0.000005
|
| 90 |
+
num_train_epochs: 1
|
| 91 |
+
lr_scheduler_type: cosine
|
| 92 |
+
warmup_ratio: 0.01
|
| 93 |
+
pure_bf16: true
|
| 94 |
+
flash_attn: fa2
|
| 95 |
+
|
| 96 |
+
### eval
|
| 97 |
+
val_size: 0.01
|
| 98 |
+
per_device_eval_batch_size: 1
|
| 99 |
+
eval_strategy: steps
|
| 100 |
+
eval_steps: 1000
|
| 101 |
+
```
|
| 102 |
+
|
| 103 |
+
### BAdam Training results
|
| 104 |
+
|
| 105 |
+
| Training Loss | Epoch | Step | Validation Loss |
|
| 106 |
+
|:-------------:|:------:|:----:|:---------------:|
|
| 107 |
+
| 0.3914 | 0.1607 | 1000 | 0.2984 |
|
| 108 |
+
| 0.3256 | 0.3214 | 2000 | 0.2819 |
|
| 109 |
+
| 0.4131 | 0.4821 | 3000 | 0.2765 |
|
| 110 |
+
| 0.3922 | 0.6428 | 4000 | 0.2736 |
|
| 111 |
+
| 0.3528 | 0.8036 | 5000 | 0.2724 |
|
| 112 |
+
| 0.3477 | 0.9643 | 6000 | 0.2724 |
|