hybrid_lexical_hosting_64_15_v2

This model is a fine-tuned version of vinai/phobert-base-v2 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8164
  • Accuracy: 0.8576
  • F1: 0.8576

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 2580
  • num_epochs: 15

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
42.9086 1.0 1032 5.8377 0.5453 0.4382
24.7451 2.0 2064 7.7162 0.5456 0.4388
17.4566 3.0 3096 2.5417 0.6740 0.6637
12.0533 4.0 4128 4.9885 0.8127 0.8126
8.4531 5.0 5160 3.3348 0.8201 0.8197
6.3636 6.0 6192 1.5283 0.8325 0.8324
5.0662 7.0 7224 2.4994 0.8383 0.8382
4.3726 8.0 8256 2.6446 0.8354 0.8351
3.7847 9.0 9288 1.3979 0.8386 0.8386
3.4433 10.0 10320 2.2144 0.8449 0.8449
3.0554 11.0 11352 1.0773 0.8380 0.8367
2.7706 12.0 12384 0.8758 0.8532 0.8533
2.5067 13.0 13416 1.0391 0.8527 0.8526
2.4275 14.0 14448 1.0730 0.8512 0.8513
2.3293 15.0 15480 0.8164 0.8576 0.8576

Framework versions

  • Transformers 4.57.1
  • Pytorch 2.6.0+cu124
  • Datasets 4.1.1
  • Tokenizers 0.22.1
Downloads last month
5
Safetensors
Model size
0.1B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for ttqdunggg/hybrid_lexical_hosting_64_15_v2

Finetuned
(293)
this model