File size: 2,836 Bytes
d0620d4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
---
{
  "language": ["en"],
  "license": "apache-2.0",
  "tags": [
    "text-generation",
    "causal-lm",
    "instruction-tuning",
    "supervised-fine-tuning",
    "synthetic-qa",
    "lora",
    "axolotl",
    "deepspeed",
    "transformers",
    "mistral",
    "nemo",
    "eu-hpc"
  ],
  "datasets": ["axolotl_deduplicated_synthetic_qa"],
  "metrics": ["loss"],
  "library_name": "transformers",
  "framework": "pytorch",
  "base_model": "mistralai/Mistral-Nemo-Instruct-2407",
  "model_name": "mistral-12b-sft",
  "pipeline_tag": "text-generation",
  "task_categories": ["text-generation", "instruction-following"],
  "model_type": "AutoModelForCausalLM",
  "inference": {
    "parameters": {
      "max_new_tokens": 512,
      "temperature": 0.7,
      "top_p": 0.9
    }
  },
  "trained_on": ["Leonardo EuroHPC"],
  "description": "Supervised fine-tuning (SFT) of Mistral 12B Nemo Instruct on synthetic QA data using LoRA with Axolotl and DeepSpeed. Improves conversational reasoning and factual accuracy."
}

---

# Mistral 12B — SFT (Supervised Fine-Tuning on Synthetic QA)

**Model type:** Causal Language Model  
**Base model:** [mistralai/Mistral-Nemo-Instruct-2407](https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407)  
**License:** Apache 2.0  
**Framework:** [Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)

---

## Overview

`mistral-12b-sft` is a **supervised fine-tuned** variant of Mistral-12B trained on high-quality synthetic QA data.  
This SFT phase enhances instruction following, factual reasoning, and conversational ability while maintaining model efficiency via 8-bit LoRA adapters.

Training was conducted on **Leonardo EuroHPC**.

---

## Training Setup

**Objective:** Supervised fine-tuning (instruction-following QA)  
**Adapter:** LoRA + 8-bit base  
**Precision:** bfloat16  
**Hardware:** 8 × 2 × A100 64 GB  
**Framework:** Axolotl + DeepSpeed + PyTorch 2.5.1 + CUDA 12.1  
**Runtime:** ~6 h  
**Validation:** 30 %

---

## Dataset

| Dataset | Type | Description |
|----------|------|-------------|
| `axolotl_deduplicated_synthetic_qa.jsonl` | `alpaca_chat.load_qa` | Synthetic instruction–response pairs for QA and chat fine-tuning |

---

## Hyperparameters

| Parameter | Value |
|------------|-------|
| Sequence length | 2048 |
| Micro batch size | 2 |
| Gradient accumulation | 2 |
| Epochs | 1 |
| Learning rate | 0.0002 |
| LR scheduler | cosine |
| Optimizer | AdamW (8-bit) |
| Warmup steps | 10 |
| Weight decay | 0.0 |
| LoRA rank (r) | 16 |
| LoRA alpha | 32 |
| LoRA dropout | 0.05 |
| LoRA targets | q_proj, k_proj, v_proj, o_proj |
| Gradient checkpointing | ✅ |
| Flash attention | ✅ |
| Auto-resume | ✅ |
| Loss watchdog | threshold 5.0, patience 3 |

---

## Tokenizer

**Tokenizer type:** `AutoTokenizer`  
**Pad token:** `<|end_of_text|>`