--- license: mit datasets: - IP102 library_name: ultralytics tags: - object-detection - YOLO11s - pests - agriculture - ip102 model-index: - name: IP102 Pest Detector (YOLO11 Small) results: - task: type: object-detection dataset: name: IP102 type: pest-detection metrics: - type: mAP@0.5 value: 0.941 - type: mAP@0.5:0.95 value: 0.838 - type: Precision value: 0.923 - type: Recall value: 0.907 --- # ๐Ÿž IP102 Pest Detector โ€” YOLO11 Small A custom YOLO11 object detection model trained on the **IP102** dataset โ€” designed for pest detection in precision agriculture. > **Model Purpose:** Detect and classify 102 pest species in real-time field conditions using computer vision. --- ## ๐Ÿ’ก Model Details - **Model:** YOLO11 Small - **Dataset:** IP102 (Balanced, 34K+ images) - **Image Sizes:** Trained on 640x640 and 896x896 - **Classes:** 102 pest species - **Framework:** Ultralytics YOLO11s - **Hardware:** NVIDIA A100 GPU - **Epochs:** 77 - **License:** MIT License --- ## ๐Ÿงช Performance | Metric | Train Set | Validation Set | |----------------------|-----------|-----------------| | Precision | 0.912 | 0.744 | | Recall | 0.923 | 0.789 | | mAP@0.5 | 0.941 | 0.815 | | mAP@0.5:0.95 | 0.838 | 0.605 | --- --- ## ๐Ÿœ Class List The model detects 102 agricultural pests, including: rice leaf roller paddy stem maggot brown plant hopper aphids mole cricket blister beetle ...and many more! (See pests.yaml for the full class list.) --- ## โš–๏ธ License This project is released under the MIT License โ€” free for personal and commercial use. --- ## ๐Ÿ“š Citation If you use this model in research or production, please cite the IP102 dataset: Wu, S., Zhan, C., et al. "IP102: A Large-Scale Benchmark Dataset for Insect Pest Recognition." CVPR, 2019. --- ## ๐Ÿ’ฌ Questions? Open an issue or reach me on Hugging Face Discussions. --- ## ๐Ÿ“ฆ Usage ```python from ultralytics import YOLO # Load model model = YOLO("path/to/best.pt") # Run inference results = model.predict("your_image.jpg", imgsz=640) # Display results results.show()