Update README.md
Browse files
README.md
CHANGED
|
@@ -18,13 +18,13 @@ tags:
|
|
| 18 |
|
| 19 |
|
| 20 |
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
| 21 |
-
We have a free Google Colab Tesla T4 notebook for Llama 3.
|
| 22 |
|
| 23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
| 24 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 25 |
|
| 26 |
-
# unsloth/
|
| 27 |
-
For more details on the model, please go to Meta's original [model card](https://huggingface.co/
|
| 28 |
|
| 29 |
## ✨ Finetune for Free
|
| 30 |
|
|
@@ -32,22 +32,22 @@ All notebooks are **beginner friendly**! Add your dataset, click "Run All", and
|
|
| 32 |
|
| 33 |
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
| 34 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
| 35 |
-
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 36 |
-
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 37 |
-
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 38 |
-
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 39 |
-
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 40 |
-
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 41 |
-
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 42 |
-
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/
|
| 43 |
-
| **DPO - Zephyr** | [▶️ Start on Colab](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) | 1.9x faster | 19% less |
|
| 44 |
|
| 45 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
|
| 46 |
|
| 47 |
-
- This [conversational notebook](https://colab.research.google.com/
|
| 48 |
-
- This [text completion notebook](https://colab.research.google.com/
|
| 49 |
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
| 50 |
|
|
|
|
| 51 |
## Special Thanks
|
| 52 |
A huge thank you to the Meta and Llama team for creating and releasing these models
|
| 53 |
|
|
|
|
| 18 |
|
| 19 |
|
| 20 |
# Finetune Llama 3.3, Gemma 2, Mistral 2-5x faster with 70% less memory via Unsloth!
|
| 21 |
+
We have a free Google Colab Tesla T4 notebook for Llama 3.1 (8B) here: https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb
|
| 22 |
|
| 23 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/Discord%20button.png" width="200"/>](https://discord.gg/unsloth)
|
| 24 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>](https://github.com/unslothai/unsloth)
|
| 25 |
|
| 26 |
+
# unsloth/DeepSeek-V3-GGUF
|
| 27 |
+
For more details on the model, please go to Meta's original [model card](https://huggingface.co/deepseek-ai/DeepSeek-V3)
|
| 28 |
|
| 29 |
## ✨ Finetune for Free
|
| 30 |
|
|
|
|
| 32 |
|
| 33 |
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
| 34 |
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
| 35 |
+
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
|
| 36 |
+
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
|
| 37 |
+
| **Qwen2 VL (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2_VL_(7B)-Vision.ipynb) | 1.8x faster | 60% less |
|
| 38 |
+
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
|
| 39 |
+
| **Llama-3.1 (8B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.1_(8B)-Alpaca.ipynb) | 2.4x faster | 58% less |
|
| 40 |
+
| **Phi-3.5 (mini)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_3.5_Mini-Conversational.ipynb) | 2x faster | 50% less |
|
| 41 |
+
| **Gemma 2 (9B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma2_(9B)-Alpaca.ipynb) | 2.4x faster | 58% less |
|
| 42 |
+
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
|
|
|
|
| 43 |
|
| 44 |
[<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="200"/>](https://docs.unsloth.ai)
|
| 45 |
|
| 46 |
+
- This [Llama 3.2 conversational notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) is useful for ShareGPT ChatML / Vicuna templates.
|
| 47 |
+
- This [text completion notebook](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_(7B)-Text_Completion.ipynb) is for raw text. This [DPO notebook](https://colab.research.google.com/drive/15vttTpzzVXv_tJwEk-hIcQ0S9FcEWvwP?usp=sharing) replicates Zephyr.
|
| 48 |
- \* Kaggle has 2x T4s, but we use 1. Due to overhead, 1x T4 is 5x faster.
|
| 49 |
|
| 50 |
+
|
| 51 |
## Special Thanks
|
| 52 |
A huge thank you to the Meta and Llama team for creating and releasing these models
|
| 53 |
|