Update README.md
Browse files
README.md
CHANGED
|
@@ -1,14 +1,52 @@
|
|
| 1 |
---
|
| 2 |
-
license: gemma
|
| 3 |
-
library_name: transformers
|
| 4 |
-
pipeline_tag: image-text-to-text
|
| 5 |
-
extra_gated_heading: Access Gemma on Hugging Face
|
| 6 |
-
extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
|
| 7 |
-
agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
|
| 8 |
-
Face and click below. Requests are processed immediately.
|
| 9 |
-
extra_gated_button_content: Acknowledge license
|
| 10 |
base_model: google/gemma-3-27b-pt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
# Gemma 3 model card
|
| 14 |
|
|
@@ -58,107 +96,6 @@ for everyone.
|
|
| 58 |
question, analysis of image content, or a summary of a document
|
| 59 |
- Total output context of 8192 tokens
|
| 60 |
|
| 61 |
-
### Usage
|
| 62 |
-
|
| 63 |
-
Below there are some code snippets on how to get quickly started with running the model. First, install the Transformers library with the version made for Gemma 3:
|
| 64 |
-
|
| 65 |
-
```sh
|
| 66 |
-
$ pip install git+https://github.com/huggingface/[email protected]
|
| 67 |
-
```
|
| 68 |
-
|
| 69 |
-
Then, copy the snippet from the section that is relevant for your use case.
|
| 70 |
-
|
| 71 |
-
#### Running with the `pipeline` API
|
| 72 |
-
|
| 73 |
-
You can initialize the model and processor for inference with `pipeline` as follows.
|
| 74 |
-
|
| 75 |
-
```python
|
| 76 |
-
from transformers import pipeline
|
| 77 |
-
import torch
|
| 78 |
-
|
| 79 |
-
pipe = pipeline(
|
| 80 |
-
"image-text-to-text",
|
| 81 |
-
model="google/gemma-3-27b-it",
|
| 82 |
-
device="cuda",
|
| 83 |
-
torch_dtype=torch.bfloat16
|
| 84 |
-
)
|
| 85 |
-
```
|
| 86 |
-
|
| 87 |
-
With instruction-tuned models, you need to use chat templates to process our inputs first. Then, you can pass it to the pipeline.
|
| 88 |
-
|
| 89 |
-
```python
|
| 90 |
-
messages = [
|
| 91 |
-
{
|
| 92 |
-
"role": "system",
|
| 93 |
-
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
| 94 |
-
},
|
| 95 |
-
{
|
| 96 |
-
"role": "user",
|
| 97 |
-
"content": [
|
| 98 |
-
{"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
|
| 99 |
-
{"type": "text", "text": "What animal is on the candy?"}
|
| 100 |
-
]
|
| 101 |
-
}
|
| 102 |
-
]
|
| 103 |
-
|
| 104 |
-
output = pipe(text=messages, max_new_tokens=200)
|
| 105 |
-
print(output[0][0]["generated_text"][-1]["content"])
|
| 106 |
-
# Okay, let's take a look!
|
| 107 |
-
# Based on the image, the animal on the candy is a **turtle**.
|
| 108 |
-
# You can see the shell shape and the head and legs.
|
| 109 |
-
```
|
| 110 |
-
|
| 111 |
-
#### Running the model on a single/multi GPU
|
| 112 |
-
|
| 113 |
-
```python
|
| 114 |
-
# pip install accelerate
|
| 115 |
-
|
| 116 |
-
from transformers import AutoProcessor, Gemma3ForConditionalGeneration
|
| 117 |
-
from PIL import Image
|
| 118 |
-
import requests
|
| 119 |
-
import torch
|
| 120 |
-
|
| 121 |
-
model_id = "google/gemma-3-27b-it"
|
| 122 |
-
|
| 123 |
-
model = Gemma3ForConditionalGeneration.from_pretrained(
|
| 124 |
-
model_id, device_map="auto"
|
| 125 |
-
).eval()
|
| 126 |
-
|
| 127 |
-
processor = AutoProcessor.from_pretrained(model_id)
|
| 128 |
-
|
| 129 |
-
messages = [
|
| 130 |
-
{
|
| 131 |
-
"role": "system",
|
| 132 |
-
"content": [{"type": "text", "text": "You are a helpful assistant."}]
|
| 133 |
-
},
|
| 134 |
-
{
|
| 135 |
-
"role": "user",
|
| 136 |
-
"content": [
|
| 137 |
-
{"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
|
| 138 |
-
{"type": "text", "text": "Describe this image in detail."}
|
| 139 |
-
]
|
| 140 |
-
}
|
| 141 |
-
]
|
| 142 |
-
|
| 143 |
-
inputs = processor.apply_chat_template(
|
| 144 |
-
messages, add_generation_prompt=True, tokenize=True,
|
| 145 |
-
return_dict=True, return_tensors="pt"
|
| 146 |
-
).to(model.device, dtype=torch.bfloat16)
|
| 147 |
-
|
| 148 |
-
input_len = inputs["input_ids"].shape[-1]
|
| 149 |
-
|
| 150 |
-
with torch.inference_mode():
|
| 151 |
-
generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
|
| 152 |
-
generation = generation[0][input_len:]
|
| 153 |
-
|
| 154 |
-
decoded = processor.decode(generation, skip_special_tokens=True)
|
| 155 |
-
print(decoded)
|
| 156 |
-
|
| 157 |
-
# **Overall Impression:** The image is a close-up shot of a vibrant garden scene,
|
| 158 |
-
# focusing on a cluster of pink cosmos flowers and a busy bumblebee.
|
| 159 |
-
# It has a slightly soft, natural feel, likely captured in daylight.
|
| 160 |
-
```
|
| 161 |
-
|
| 162 |
### Citation
|
| 163 |
|
| 164 |
```none
|
|
|
|
| 1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
base_model: google/gemma-3-27b-pt
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
library_name: transformers
|
| 6 |
+
license: gemma
|
| 7 |
+
tags:
|
| 8 |
+
- unsloth
|
| 9 |
+
- transformers
|
| 10 |
+
- gemma3
|
| 11 |
+
- gemma
|
| 12 |
+
- google
|
| 13 |
---
|
| 14 |
+
<div>
|
| 15 |
+
<p style="margin-bottom: 0; margin-top: 0;">
|
| 16 |
+
<strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong>
|
| 17 |
+
</p>
|
| 18 |
+
<p style="margin-bottom: 0;">
|
| 19 |
+
<em>Unsloth's Gemma 3 <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
|
| 20 |
+
</p>
|
| 21 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
| 22 |
+
<a href="https://github.com/unslothai/unsloth/">
|
| 23 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
| 24 |
+
</a>
|
| 25 |
+
<a href="https://discord.gg/unsloth">
|
| 26 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
| 27 |
+
</a>
|
| 28 |
+
<a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
|
| 29 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
| 30 |
+
</a>
|
| 31 |
+
</div>
|
| 32 |
+
<h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1>
|
| 33 |
+
</div>
|
| 34 |
+
|
| 35 |
+
- Fine-tune Gemma 3 (12B) for free using our Google [Colab notebook here](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3.ipynb)!
|
| 36 |
+
- Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3)
|
| 37 |
+
- View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
|
| 38 |
+
- Export your fine-tuned model to GGUF, Ollama, llama.cpp or 🤗HF.
|
| 39 |
+
|
| 40 |
+
| Unsloth supports | Free Notebooks | Performance | Memory use |
|
| 41 |
+
|-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
|
| 42 |
+
| **GRPO with Gemma 3 (12B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma_3_(12B)-GRPO.ipynb) | 2x faster | 80% less |
|
| 43 |
+
| **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
|
| 44 |
+
| **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
|
| 45 |
+
| **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
|
| 46 |
+
| **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
|
| 47 |
+
| **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
|
| 48 |
+
|
| 49 |
+
<br>
|
| 50 |
|
| 51 |
# Gemma 3 model card
|
| 52 |
|
|
|
|
| 96 |
question, analysis of image content, or a summary of a document
|
| 97 |
- Total output context of 8192 tokens
|
| 98 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
### Citation
|
| 100 |
|
| 101 |
```none
|