shimmyshimmer commited on
Commit
3f42fd7
·
verified ·
1 Parent(s): b31b5bf

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -109
README.md CHANGED
@@ -1,14 +1,52 @@
1
  ---
2
- license: gemma
3
- library_name: transformers
4
- pipeline_tag: image-text-to-text
5
- extra_gated_heading: Access Gemma on Hugging Face
6
- extra_gated_prompt: To access Gemma on Hugging Face, you’re required to review and
7
- agree to Google’s usage license. To do this, please ensure you’re logged in to Hugging
8
- Face and click below. Requests are processed immediately.
9
- extra_gated_button_content: Acknowledge license
10
  base_model: google/gemma-3-27b-pt
 
 
 
 
 
 
 
 
 
 
11
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
 
13
  # Gemma 3 model card
14
 
@@ -58,107 +96,6 @@ for everyone.
58
  question, analysis of image content, or a summary of a document
59
  - Total output context of 8192 tokens
60
 
61
- ### Usage
62
-
63
- Below there are some code snippets on how to get quickly started with running the model. First, install the Transformers library with the version made for Gemma 3:
64
-
65
- ```sh
66
- $ pip install git+https://github.com/huggingface/[email protected]
67
- ```
68
-
69
- Then, copy the snippet from the section that is relevant for your use case.
70
-
71
- #### Running with the `pipeline` API
72
-
73
- You can initialize the model and processor for inference with `pipeline` as follows.
74
-
75
- ```python
76
- from transformers import pipeline
77
- import torch
78
-
79
- pipe = pipeline(
80
- "image-text-to-text",
81
- model="google/gemma-3-27b-it",
82
- device="cuda",
83
- torch_dtype=torch.bfloat16
84
- )
85
- ```
86
-
87
- With instruction-tuned models, you need to use chat templates to process our inputs first. Then, you can pass it to the pipeline.
88
-
89
- ```python
90
- messages = [
91
- {
92
- "role": "system",
93
- "content": [{"type": "text", "text": "You are a helpful assistant."}]
94
- },
95
- {
96
- "role": "user",
97
- "content": [
98
- {"type": "image", "url": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/p-blog/candy.JPG"},
99
- {"type": "text", "text": "What animal is on the candy?"}
100
- ]
101
- }
102
- ]
103
-
104
- output = pipe(text=messages, max_new_tokens=200)
105
- print(output[0][0]["generated_text"][-1]["content"])
106
- # Okay, let's take a look!
107
- # Based on the image, the animal on the candy is a **turtle**.
108
- # You can see the shell shape and the head and legs.
109
- ```
110
-
111
- #### Running the model on a single/multi GPU
112
-
113
- ```python
114
- # pip install accelerate
115
-
116
- from transformers import AutoProcessor, Gemma3ForConditionalGeneration
117
- from PIL import Image
118
- import requests
119
- import torch
120
-
121
- model_id = "google/gemma-3-27b-it"
122
-
123
- model = Gemma3ForConditionalGeneration.from_pretrained(
124
- model_id, device_map="auto"
125
- ).eval()
126
-
127
- processor = AutoProcessor.from_pretrained(model_id)
128
-
129
- messages = [
130
- {
131
- "role": "system",
132
- "content": [{"type": "text", "text": "You are a helpful assistant."}]
133
- },
134
- {
135
- "role": "user",
136
- "content": [
137
- {"type": "image", "image": "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/bee.jpg"},
138
- {"type": "text", "text": "Describe this image in detail."}
139
- ]
140
- }
141
- ]
142
-
143
- inputs = processor.apply_chat_template(
144
- messages, add_generation_prompt=True, tokenize=True,
145
- return_dict=True, return_tensors="pt"
146
- ).to(model.device, dtype=torch.bfloat16)
147
-
148
- input_len = inputs["input_ids"].shape[-1]
149
-
150
- with torch.inference_mode():
151
- generation = model.generate(**inputs, max_new_tokens=100, do_sample=False)
152
- generation = generation[0][input_len:]
153
-
154
- decoded = processor.decode(generation, skip_special_tokens=True)
155
- print(decoded)
156
-
157
- # **Overall Impression:** The image is a close-up shot of a vibrant garden scene,
158
- # focusing on a cluster of pink cosmos flowers and a busy bumblebee.
159
- # It has a slightly soft, natural feel, likely captured in daylight.
160
- ```
161
-
162
  ### Citation
163
 
164
  ```none
 
1
  ---
 
 
 
 
 
 
 
 
2
  base_model: google/gemma-3-27b-pt
3
+ language:
4
+ - en
5
+ library_name: transformers
6
+ license: gemma
7
+ tags:
8
+ - unsloth
9
+ - transformers
10
+ - gemma3
11
+ - gemma
12
+ - google
13
  ---
14
+ <div>
15
+ <p style="margin-bottom: 0; margin-top: 0;">
16
+ <strong>See <a href="https://huggingface.co/collections/unsloth/gemma-3-67d12b7e8816ec6efa7e4e5b">our collection</a> for all versions of Gemma 3 including GGUF, 4-bit & 16-bit formats.</strong>
17
+ </p>
18
+ <p style="margin-bottom: 0;">
19
+ <em>Unsloth's Gemma 3 <a href="https://unsloth.ai/blog/dynamic-4bit">Dynamic Quants</a> is selectively quantized, greatly improving accuracy over standard 4-bit.</em>
20
+ </p>
21
+ <div style="display: flex; gap: 5px; align-items: center; ">
22
+ <a href="https://github.com/unslothai/unsloth/">
23
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
24
+ </a>
25
+ <a href="https://discord.gg/unsloth">
26
+ <img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
27
+ </a>
28
+ <a href="https://docs.unsloth.ai/basics/tutorial-how-to-run-deepseek-r1-on-your-own-local-device">
29
+ <img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
30
+ </a>
31
+ </div>
32
+ <h1 style="margin-top: 0rem;">✨ Fine-tune Gemma 3 with Unsloth!</h1>
33
+ </div>
34
+
35
+ - Fine-tune Gemma 3 (12B) for free using our Google [Colab notebook here](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma3.ipynb)!
36
+ - Read our Blog about Gemma 3 support: [unsloth.ai/blog/gemma3](https://unsloth.ai/blog/gemma3)
37
+ - View the rest of our notebooks in our [docs here](https://docs.unsloth.ai/get-started/unsloth-notebooks).
38
+ - Export your fine-tuned model to GGUF, Ollama, llama.cpp or 🤗HF.
39
+
40
+ | Unsloth supports | Free Notebooks | Performance | Memory use |
41
+ |-----------------|--------------------------------------------------------------------------------------------------------------------------|-------------|----------|
42
+ | **GRPO with Gemma 3 (12B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Gemma_3_(12B)-GRPO.ipynb) | 2x faster | 80% less |
43
+ | **Llama-3.2 (3B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(1B_and_3B)-Conversational.ipynb) | 2.4x faster | 58% less |
44
+ | **Llama-3.2 (11B vision)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Llama3.2_(11B)-Vision.ipynb) | 2x faster | 60% less |
45
+ | **Qwen2.5 (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen2.5_(7B)-Alpaca.ipynb) | 2x faster | 60% less |
46
+ | **Phi-4 (14B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Phi_4-Conversational.ipynb) | 2x faster | 50% less |
47
+ | **Mistral (7B)** | [▶️ Start on Colab](https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Mistral_v0.3_(7B)-Conversational.ipynb) | 2.2x faster | 62% less |
48
+
49
+ <br>
50
 
51
  # Gemma 3 model card
52
 
 
96
  question, analysis of image content, or a summary of a document
97
  - Total output context of 8192 tokens
98
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
99
  ### Citation
100
 
101
  ```none