user6295018 commited on
Commit
d2232af
·
verified ·
1 Parent(s): 26d068d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +56 -3
README.md CHANGED
@@ -2,12 +2,65 @@
2
  library_name: transformers
3
  license: apache-2.0
4
  base_model: distilbert-base-uncased
 
5
  tags:
6
  - text-classification
7
  - bloom
8
  - check-in-quality
9
- language: en
10
- datasets: CodingInColor-DailySlackCheckins
 
 
11
  metrics:
12
  - accuracy
13
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
  license: apache-2.0
4
  base_model: distilbert-base-uncased
5
+ language: en
6
  tags:
7
  - text-classification
8
  - bloom
9
  - check-in-quality
10
+ - transformers
11
+ - fastapi
12
+ datasets:
13
+ - CodingInColor-DailySlackCheckins
14
  metrics:
15
  - accuracy
16
+ - f1
17
+ - precision
18
+ - recall
19
+ pipeline_tag: text-classification
20
+ model-index:
21
+ - name: Bloom Check-in Quality Classifier
22
+ results: []
23
+ ---
24
+
25
+ # 🌸 Bloom Check-in Quality Classifier
26
+
27
+ The **Bloom Check-in Quality Classifier** is a fine-tuned `DistilBERT` model designed to analyze daily check-ins from the *Coding in Color* program and classify them into one of three categories:
28
+
29
+ - **Descriptive** — Clear, thoughtful, and specific check-ins
30
+ - **Neutral** — Somewhat informative but missing depth
31
+ - **Vague** — Minimal or unclear updates
32
+
33
+ This model powers Bloom AI’s productivity assistant, which helps students reflect on their daily work habits and communicate effectively.
34
+
35
+ ---
36
+
37
+ ## 🧠 Model Details
38
+
39
+ - **Base model:** `distilbert-base-uncased`
40
+ - **Framework:** 🤗 Transformers + PyTorch
41
+ - **Language:** English
42
+ - **Task:** Text Classification
43
+ - **Labels:** `["vague", "neutral", "descriptive"]`
44
+
45
+ ---
46
+
47
+ ## 📊 Training Information
48
+
49
+ - **Dataset:** 1,200+ anonymized check-ins from the Coding in Color program
50
+ - **Split:** 80% train / 10% validation / 10% test
51
+ - **Epochs:** 3
52
+ - **Batch size:** 16
53
+ - **Optimizer:** AdamW
54
+ - **Learning rate:** 5e-5
55
+
56
+ ---
57
+
58
+ ## ⚙️ Inference Example
59
+
60
+ ```python
61
+ from transformers import pipeline
62
+
63
+ classifier = pipeline("text-classification", model="user6295018/checkin-quality-classifier")
64
+
65
+ classifier("Had a really productive day working on my API and debugging the UI.")
66
+ # [{'label': 'descriptive', 'score': 0.94}]