update model card README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,92 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- generated_from_trainer
|
| 5 |
+
metrics:
|
| 6 |
+
- accuracy
|
| 7 |
+
- precision
|
| 8 |
+
- recall
|
| 9 |
+
- f1
|
| 10 |
+
model-index:
|
| 11 |
+
- name: convnext-tiny-224_album_vitVMMRdb_make_model_album_pred
|
| 12 |
+
results: []
|
| 13 |
+
---
|
| 14 |
+
|
| 15 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
| 16 |
+
should probably proofread and complete it, then remove this comment. -->
|
| 17 |
+
|
| 18 |
+
# convnext-tiny-224_album_vitVMMRdb_make_model_album_pred
|
| 19 |
+
|
| 20 |
+
This model is a fine-tuned version of [facebook/convnext-tiny-224](https://huggingface.co/facebook/convnext-tiny-224) on the None dataset.
|
| 21 |
+
It achieves the following results on the evaluation set:
|
| 22 |
+
- Loss: 0.4384
|
| 23 |
+
- Accuracy: 0.8814
|
| 24 |
+
- Precision: 0.8793
|
| 25 |
+
- Recall: 0.8814
|
| 26 |
+
- F1: 0.8772
|
| 27 |
+
|
| 28 |
+
## Model description
|
| 29 |
+
|
| 30 |
+
More information needed
|
| 31 |
+
|
| 32 |
+
## Intended uses & limitations
|
| 33 |
+
|
| 34 |
+
More information needed
|
| 35 |
+
|
| 36 |
+
## Training and evaluation data
|
| 37 |
+
|
| 38 |
+
More information needed
|
| 39 |
+
|
| 40 |
+
## Training procedure
|
| 41 |
+
|
| 42 |
+
### Training hyperparameters
|
| 43 |
+
|
| 44 |
+
The following hyperparameters were used during training:
|
| 45 |
+
- learning_rate: 5e-05
|
| 46 |
+
- train_batch_size: 64
|
| 47 |
+
- eval_batch_size: 64
|
| 48 |
+
- seed: 42
|
| 49 |
+
- gradient_accumulation_steps: 4
|
| 50 |
+
- total_train_batch_size: 256
|
| 51 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
| 52 |
+
- lr_scheduler_type: linear
|
| 53 |
+
- lr_scheduler_warmup_ratio: 0.1
|
| 54 |
+
- num_epochs: 25
|
| 55 |
+
|
| 56 |
+
### Training results
|
| 57 |
+
|
| 58 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision | Recall | F1 |
|
| 59 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------:|:------:|:------:|
|
| 60 |
+
| 4.8445 | 1.0 | 944 | 4.7488 | 0.0919 | 0.0214 | 0.0919 | 0.0266 |
|
| 61 |
+
| 3.8243 | 2.0 | 1888 | 3.6914 | 0.2379 | 0.1520 | 0.2379 | 0.1447 |
|
| 62 |
+
| 2.8783 | 3.0 | 2832 | 2.7011 | 0.4105 | 0.3433 | 0.4105 | 0.3235 |
|
| 63 |
+
| 2.1348 | 4.0 | 3776 | 1.9752 | 0.5652 | 0.5279 | 0.5652 | 0.5069 |
|
| 64 |
+
| 1.6456 | 5.0 | 4720 | 1.5225 | 0.6529 | 0.6274 | 0.6529 | 0.6134 |
|
| 65 |
+
| 1.3835 | 6.0 | 5664 | 1.2167 | 0.7106 | 0.6996 | 0.7106 | 0.6845 |
|
| 66 |
+
| 1.1258 | 7.0 | 6608 | 1.0067 | 0.7491 | 0.7394 | 0.7491 | 0.7272 |
|
| 67 |
+
| 1.0181 | 8.0 | 7552 | 0.8722 | 0.7819 | 0.7755 | 0.7819 | 0.7678 |
|
| 68 |
+
| 0.7829 | 9.0 | 8496 | 0.7752 | 0.8018 | 0.7987 | 0.8018 | 0.7899 |
|
| 69 |
+
| 0.7503 | 10.0 | 9440 | 0.6983 | 0.8202 | 0.8189 | 0.8202 | 0.8121 |
|
| 70 |
+
| 0.6534 | 11.0 | 10384 | 0.6392 | 0.8301 | 0.8280 | 0.8301 | 0.8220 |
|
| 71 |
+
| 0.6108 | 12.0 | 11328 | 0.5941 | 0.8422 | 0.8384 | 0.8422 | 0.8343 |
|
| 72 |
+
| 0.5087 | 13.0 | 12272 | 0.5659 | 0.8487 | 0.8462 | 0.8487 | 0.8416 |
|
| 73 |
+
| 0.528 | 14.0 | 13216 | 0.5379 | 0.8554 | 0.8536 | 0.8554 | 0.8495 |
|
| 74 |
+
| 0.4489 | 15.0 | 14160 | 0.5189 | 0.8589 | 0.8566 | 0.8589 | 0.8528 |
|
| 75 |
+
| 0.4252 | 16.0 | 15104 | 0.5072 | 0.8626 | 0.8610 | 0.8626 | 0.8579 |
|
| 76 |
+
| 0.4239 | 17.0 | 16048 | 0.4857 | 0.8686 | 0.8678 | 0.8686 | 0.8645 |
|
| 77 |
+
| 0.3951 | 18.0 | 16992 | 0.4796 | 0.8695 | 0.8675 | 0.8695 | 0.8645 |
|
| 78 |
+
| 0.3679 | 19.0 | 17936 | 0.4685 | 0.8739 | 0.8724 | 0.8739 | 0.8695 |
|
| 79 |
+
| 0.3694 | 20.0 | 18880 | 0.4604 | 0.8751 | 0.8720 | 0.8751 | 0.8697 |
|
| 80 |
+
| 0.3435 | 21.0 | 19824 | 0.4555 | 0.8777 | 0.8755 | 0.8777 | 0.8739 |
|
| 81 |
+
| 0.3204 | 22.0 | 20768 | 0.4479 | 0.8783 | 0.8763 | 0.8783 | 0.8744 |
|
| 82 |
+
| 0.3475 | 23.0 | 21712 | 0.4433 | 0.8794 | 0.8773 | 0.8794 | 0.8753 |
|
| 83 |
+
| 0.338 | 24.0 | 22656 | 0.4408 | 0.8809 | 0.8785 | 0.8809 | 0.8767 |
|
| 84 |
+
| 0.3437 | 25.0 | 23600 | 0.4384 | 0.8814 | 0.8793 | 0.8814 | 0.8772 |
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Framework versions
|
| 88 |
+
|
| 89 |
+
- Transformers 4.24.0
|
| 90 |
+
- Pytorch 1.12.1+cu113
|
| 91 |
+
- Datasets 2.7.1
|
| 92 |
+
- Tokenizers 0.13.2
|