add_model_src_code (#1)
Browse files- add model src code (6f8733e4a99d15adc3c3f5794ceb9f442ca289b2)
- rename and documentation (fbc3442307396d208fb11eae95ceef4d7b81ed89)
Co-authored-by: Nir Raviv <[email protected]>
- requirements.txt +3 -0
- src/config.py +44 -0
- src/inference.py +174 -0
- src/models.py +24 -0
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
numpy==1.23.5
|
| 2 |
+
torch==2.2.2
|
| 3 |
+
transformers==4.44.2
|
src/config.py
ADDED
|
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import BertConfig
|
| 2 |
+
|
| 3 |
+
|
| 4 |
+
class PunctuationBertConfig(BertConfig):
|
| 5 |
+
r"""
|
| 6 |
+
This is the configuration class to store the configuration of a [`PunctuationBertConfig`]. It is based on BERT config
|
| 7 |
+
to the specified arguments, defining the model architecture.
|
| 8 |
+
Args:
|
| 9 |
+
backward_context (`int`, *optional*, defaults to 15):
|
| 10 |
+
size of backward context window
|
| 11 |
+
forward_context (`int`, *optional*, defaults to 16):
|
| 12 |
+
size of forward context window
|
| 13 |
+
output_size (`int`, *optional*, defaults to 4):
|
| 14 |
+
number of punctuation classes
|
| 15 |
+
dropout (`float`, *optional*, defaults to 0.3):
|
| 16 |
+
dropout rate
|
| 17 |
+
|
| 18 |
+
Examples:
|
| 19 |
+
```python
|
| 20 |
+
>>> from transformers import BertConfig, BertModel
|
| 21 |
+
|
| 22 |
+
>>> # Initializing a BERT google-bert/bert-base-uncased style configuration
|
| 23 |
+
>>> configuration = PunctuationBertConfig()
|
| 24 |
+
|
| 25 |
+
>>> # Initializing a model (with random weights) from the google-bert/bert-base-uncased style configuration
|
| 26 |
+
>>> model = BertForPunctuation(configuration)
|
| 27 |
+
|
| 28 |
+
>>> # Accessing the model configuration
|
| 29 |
+
>>> configuration = model.config
|
| 30 |
+
```"""
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
backward_context=15,
|
| 35 |
+
forward_context=16,
|
| 36 |
+
output_size=4,
|
| 37 |
+
dropout=0.3,
|
| 38 |
+
**kwargs,
|
| 39 |
+
):
|
| 40 |
+
super().__init__(**kwargs)
|
| 41 |
+
self.backward_context = backward_context
|
| 42 |
+
self.forward_context = forward_context
|
| 43 |
+
self.output_size = output_size
|
| 44 |
+
self.dropout = dropout
|
src/inference.py
ADDED
|
@@ -0,0 +1,174 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Tuple
|
| 2 |
+
|
| 3 |
+
import numpy as np
|
| 4 |
+
import torch
|
| 5 |
+
import torch.nn.functional as F
|
| 6 |
+
from transformers import BertTokenizer
|
| 7 |
+
|
| 8 |
+
from src.models import BertForPunctuation
|
| 9 |
+
|
| 10 |
+
PUNCTUATION_SIGNS = ['', ',', '.', '?']
|
| 11 |
+
PAUSE_TOKEN = 0
|
| 12 |
+
MODEL_NAME = "verbit/hebrew_punctuation"
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
def tokenize_text(
|
| 16 |
+
word_list: List[str], pause_list: List[float], tokenizer: BertTokenizer
|
| 17 |
+
) -> Tuple[List[int], List[int], List[float]]:
|
| 18 |
+
"""
|
| 19 |
+
Tokenizes text and generates pause list for each word
|
| 20 |
+
Args:
|
| 21 |
+
word_list: list of words
|
| 22 |
+
pause_list: list of pauses after each word in seconds
|
| 23 |
+
tokenizer: tokenizer
|
| 24 |
+
|
| 25 |
+
Returns:
|
| 26 |
+
original_word_idx: list of indexes of original words
|
| 27 |
+
x: list of indexed words
|
| 28 |
+
pause: list of pauses after each word in seconds
|
| 29 |
+
"""
|
| 30 |
+
assert len(word_list) == len(pause_list), "word_list and pause_list should have the same length"
|
| 31 |
+
x, pause = [], []
|
| 32 |
+
|
| 33 |
+
# when we do tokenization the number of tokens might be more than one for single word, so we need to keep
|
| 34 |
+
# mapping tokens into real words
|
| 35 |
+
original_word_idx = []
|
| 36 |
+
for w, p in zip(word_list, pause_list):
|
| 37 |
+
tokens = tokenizer.tokenize(w)
|
| 38 |
+
p = [p]
|
| 39 |
+
# converting tokens to idx, if we have no token for current word then just pad it with 0 to be safe
|
| 40 |
+
_x = tokenizer.convert_tokens_to_ids(tokens) if tokens else [0]
|
| 41 |
+
|
| 42 |
+
if len(_x) > 1:
|
| 43 |
+
p = (len(_x) - 1) * [0] + p
|
| 44 |
+
x += _x
|
| 45 |
+
original_word_idx.append(len(x) - 1)
|
| 46 |
+
pause += p
|
| 47 |
+
|
| 48 |
+
return original_word_idx, x, pause
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
def gen_model_inputs(
|
| 52 |
+
x: List[int],
|
| 53 |
+
pause: List[float],
|
| 54 |
+
forward_context: int,
|
| 55 |
+
backward_context: int,
|
| 56 |
+
) -> torch.Tensor:
|
| 57 |
+
"""
|
| 58 |
+
Generates inputs for model out of list of indexed words.
|
| 59 |
+
Inserts a pause token into the segment
|
| 60 |
+
Args:
|
| 61 |
+
x: list of indexed words
|
| 62 |
+
pause: list of corresponding pauses
|
| 63 |
+
forward_context: size of the forward context window
|
| 64 |
+
backward_context: size of the backward context window (without the predicted token)`
|
| 65 |
+
|
| 66 |
+
Returns:
|
| 67 |
+
A tensor of model inputs for each indexed word in x
|
| 68 |
+
"""
|
| 69 |
+
model_input = []
|
| 70 |
+
tokenized_pause = [PAUSE_TOKEN] * len(pause)
|
| 71 |
+
x_pad = [0] * backward_context + x + [0] * forward_context
|
| 72 |
+
|
| 73 |
+
for i in range(len(x)):
|
| 74 |
+
segment = x_pad[i : i + backward_context + forward_context + 1]
|
| 75 |
+
segment.insert(backward_context + 1, tokenized_pause[i])
|
| 76 |
+
model_input.append(segment)
|
| 77 |
+
return torch.tensor(model_input)
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def add_punctuation_to_text(text: str, punct_prob: np.ndarray) -> str:
|
| 81 |
+
"""
|
| 82 |
+
Inserts punctuation to text on provided punctuation string for every word
|
| 83 |
+
Args:
|
| 84 |
+
text: text to insert punctuation to
|
| 85 |
+
punct_prob: matrix of probabilities for each punctuation
|
| 86 |
+
|
| 87 |
+
Returns:
|
| 88 |
+
text with punctuation
|
| 89 |
+
"""
|
| 90 |
+
words = text.split()
|
| 91 |
+
new_words = list()
|
| 92 |
+
|
| 93 |
+
punctuation_idx = np.argmax(punct_prob, axis=1)
|
| 94 |
+
punctuation_list = [PUNCTUATION_SIGNS[i] for i in punctuation_idx]
|
| 95 |
+
|
| 96 |
+
for word, punctuation_str in zip(words, punctuation_list):
|
| 97 |
+
if punctuation_str:
|
| 98 |
+
new_words.append(word + punctuation_str)
|
| 99 |
+
else:
|
| 100 |
+
new_words.append(word)
|
| 101 |
+
|
| 102 |
+
punct_text = ' '.join(new_words)
|
| 103 |
+
return punct_text
|
| 104 |
+
|
| 105 |
+
|
| 106 |
+
def get_prediction(
|
| 107 |
+
model: BertForPunctuation,
|
| 108 |
+
text: str,
|
| 109 |
+
tokenizer: BertTokenizer,
|
| 110 |
+
batch_size: int = 16,
|
| 111 |
+
backward_context: int = 15,
|
| 112 |
+
forward_context: int = 16,
|
| 113 |
+
pause_list: Optional[List[float]] = None,
|
| 114 |
+
device: str = 'cpu',
|
| 115 |
+
) -> str:
|
| 116 |
+
"""
|
| 117 |
+
Generates predictions for given list of words.
|
| 118 |
+
Args:
|
| 119 |
+
model: punctuation model
|
| 120 |
+
text: text to predict punctuation for
|
| 121 |
+
tokenizer: tokenizer
|
| 122 |
+
batch_size: batch size
|
| 123 |
+
backward_context: size of the backward context window
|
| 124 |
+
forward_context: size of the forward context window
|
| 125 |
+
pause_list: list of pauses after each word in seconds
|
| 126 |
+
device: device to run model on
|
| 127 |
+
|
| 128 |
+
Returns:
|
| 129 |
+
text with punctuation
|
| 130 |
+
"""
|
| 131 |
+
word_list = text.split()
|
| 132 |
+
if not pause_list:
|
| 133 |
+
# make default pauses if pauses are not provided
|
| 134 |
+
pause_list = [0.0] * len(word_list)
|
| 135 |
+
|
| 136 |
+
word_idx, x, pause = tokenize_text(word_list=word_list, pause_list=pause_list, tokenizer=tokenizer)
|
| 137 |
+
|
| 138 |
+
model_inputs = gen_model_inputs(x, pause, forward_context, backward_context)
|
| 139 |
+
model_inputs = model_inputs.index_select(0, torch.LongTensor(word_idx)).to(device)
|
| 140 |
+
inputs_length = len(model_inputs)
|
| 141 |
+
|
| 142 |
+
output = []
|
| 143 |
+
with torch.no_grad():
|
| 144 |
+
for ndx in range(0, inputs_length, batch_size):
|
| 145 |
+
o = model(model_inputs[ndx : min(ndx + batch_size, inputs_length)])
|
| 146 |
+
o = F.softmax(o, dim=1)
|
| 147 |
+
output.append(o.cpu().data.numpy())
|
| 148 |
+
|
| 149 |
+
punct_probabilities_matrix = np.concatenate(output, axis=0)
|
| 150 |
+
|
| 151 |
+
punct_text = add_punctuation_to_text(text, punct_probabilities_matrix)
|
| 152 |
+
|
| 153 |
+
return punct_text
|
| 154 |
+
|
| 155 |
+
|
| 156 |
+
def main():
|
| 157 |
+
model = BertForPunctuation.from_pretrained(MODEL_NAME)
|
| 158 |
+
tokenizer = BertTokenizer.from_pretrained(MODEL_NAME)
|
| 159 |
+
model.eval()
|
| 160 |
+
|
| 161 |
+
text = """讞讘专转 讜专讘讬讟 驻讬转讞讛 诪注专讻转 诇转诪诇讜诇 讛诪讘讜住住转 注诇 讘讬谞讛 诪诇讗讻讜转讬转 讜讙讜专诐 讗谞讜砖讬 讜砖讜拽讚转 注诇 转诪诇讜诇 注讚讜讬讜转 谞讬爪讜诇讬 砖讜讗讛
|
| 162 |
+
讗转 讛转讜爪讗讜转 讗驻砖专 诇专讗讜转 讻讘专 讘专砖转 讘讛谉 讞诇拽讬诐 诪注讚讜转讜 砖诇 讟讜讘讬讛 讘讬讬诇住拽讬 砖讛讬讛 诪驻拽讚 讙讚讜讚 讛驻专讟讬讝谞讬诐 讛讬讛讜讚讬诐 讘讘讬讬诇讜专讜住讬讛"""
|
| 163 |
+
punct_text = get_prediction(
|
| 164 |
+
model=model,
|
| 165 |
+
text=text,
|
| 166 |
+
tokenizer=tokenizer,
|
| 167 |
+
backward_context=model.config.backward_context,
|
| 168 |
+
forward_context=model.config.forward_context,
|
| 169 |
+
)
|
| 170 |
+
print(punct_text)
|
| 171 |
+
|
| 172 |
+
|
| 173 |
+
if __name__ == "__main__":
|
| 174 |
+
main()
|
src/models.py
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from torch import nn
|
| 2 |
+
from transformers import BertForMaskedLM, PreTrainedModel
|
| 3 |
+
|
| 4 |
+
from src.config import PunctuationBertConfig
|
| 5 |
+
|
| 6 |
+
|
| 7 |
+
class BertForPunctuation(PreTrainedModel):
|
| 8 |
+
config_class = PunctuationBertConfig
|
| 9 |
+
|
| 10 |
+
def __init__(self, config):
|
| 11 |
+
super().__init__(config)
|
| 12 |
+
# segment_size equal backward_context + forward_context + predicted token + pause token
|
| 13 |
+
segment_size = config.backward_context + config.forward_context + 2
|
| 14 |
+
bert_vocab_size = config.vocab_size
|
| 15 |
+
self.bert = BertForMaskedLM(config)
|
| 16 |
+
self.bn = nn.BatchNorm1d(segment_size * bert_vocab_size)
|
| 17 |
+
self.fc = nn.Linear(segment_size * bert_vocab_size, config.output_size)
|
| 18 |
+
self.dropout = nn.Dropout(config.dropout)
|
| 19 |
+
|
| 20 |
+
def forward(self, x):
|
| 21 |
+
x = self.bert(x)[0]
|
| 22 |
+
x = x.view(x.shape[0], -1)
|
| 23 |
+
x = self.fc(self.dropout(self.bn(x)))
|
| 24 |
+
return x
|