# Highway Vehicle Detection - Team Instructions ## Quick Setup 1. **Clone the repository:** ```bash git clone https://huggingface.co/bichuche0705/highway-vehicle-detection-code cd highway-vehicle-detection-code ``` 2. **Install dependencies:** ```bash pip install ultralytics opencv-python numpy ``` 3. **Run the application:** ```bash python main.py ``` ## External Resources ### Test Video Watch the model in action: [YouTube Demo](https://www.youtube.com/watch?v=wqctLW0Hb_0&list=PLJKyZ_NuOhJQzif2-6-Kq9OiOj_UjJWvi) ### Main Dataset Download the complete training dataset: [Kaggle Dataset](https://www.kaggle.com/datasets/sakshamjn/vehicle-detection-8-classes-object-detection/data) ## What's Included - **Trained Models**: Ready-to-use YOLOv8m models - **Source Code**: Complete detection application - **Fine-tuning Dataset**: 92 images used for model improvement - **Training Logs**: Performance metrics and visualizations - **Documentation**: Complete project documentation ## Model Files - `models/yolov8m_stage2_improved_best.pt` - Final model (recommended) - `models/yolov8m_stage1_smart_best.pt` - Stage 1 model ## Usage Examples ### Basic Detection ```python from ultralytics import YOLO model = YOLO('models/yolov8m_stage2_improved_best.pt') results = model('image.jpg') results[0].show() ``` ### Video Processing ```python results = model('video.mp4', save=True) ``` ## Support For questions or issues, contact the project author.