# Repository Structure Overview ``` highway-vehicle-detection-code/ ├── models/ # Trained model weights │ ├── yolov8m_stage2_improved_best.pt # Final model (recommended) │ └── yolov8m_stage1_smart_best.pt # Stage 1 model ├── training_runs/ # Complete training structure │ ├── stage1_smart/ │ │ ├── args.yaml # Training arguments │ │ └── weights/ │ │ └── last.pt # Last epoch weights │ └── stage2_improved/ │ ├── args.yaml # Training arguments │ ├── weights/ │ │ └── last.pt # Last epoch weights │ ├── BoxF1_curve.png # F1 score curve │ ├── BoxPR_curve.png # Precision-Recall curve │ └── labels.jpg # Label distribution ├── training_logs/ # Training metrics and visualizations │ ├── stage2_results.png # Training results │ ├── stage2_confusion_matrix.png # Confusion matrix │ ├── stage2_results.csv # Detailed metrics │ └── stage2_val_batch0_pred.jpg # Validation samples ├── finetune_dataset/ # Fine-tuning dataset (92 images) │ ├── images/ # Training images │ ├── labels/ # Annotation files │ ├── README.dataset.txt # Dataset info │ ├── README.roboflow.txt # Roboflow info │ └── README.md # Dataset overview ├── dataset_configs/ # Dataset configurations │ ├── main_data.yaml # Main dataset config │ └── finetune_data.yaml # Fine-tuning config ├── main.py # Main application ├── example_usage.py # Usage examples ├── requirements.txt # Dependencies ├── test_improved_model.bat # Testing script ├── PROJECT_REPORT.md # Complete documentation ├── TEAM_INSTRUCTIONS.md # Team setup guide └── README.md # This file ``` ## Key Files - **models/**: Ready-to-use trained models - **training_runs/**: Complete training structure (like local runs/ folder) - **finetune_dataset/**: The 92-image fine-tuning dataset - **main.py**: Complete vehicle detection application - **External links**: YouTube demo and Kaggle dataset