# modeling_micro_distill.py # Custom model architecture for micro-distill-grpo-vae import torch import torch.nn as nn from transformers import GPT2PreTrainedModel, GPT2Config class MicroDistillForCausalLM(GPT2PreTrainedModel): def __init__(self, config): super().__init__(config) self.config = config # ... modeling code ... def forward(self, input_ids=None, attention_mask=None, **kwargs): # Forward pass implementation pass