rtdetr-v2-r50-cppe5-finetune-2

This model is a fine-tuned version of PekingU/rtdetr_v2_r50vd on an unknown dataset. It achieves the following results on the evaluation set:

  • eval_loss: 6.5817
  • eval_map: 0.6377
  • eval_map_50: 0.9261
  • eval_map_75: 0.7461
  • eval_map_small: 0.5601
  • eval_map_medium: 0.781
  • eval_map_large: 0.7309
  • eval_mar_1: 0.235
  • eval_mar_10: 0.5687
  • eval_mar_100: 0.7408
  • eval_mar_small: 0.6721
  • eval_mar_medium: 0.855
  • eval_mar_large: 0.8479
  • eval_map_checked-unchecked: -1.0
  • eval_mar_100_checked-unchecked: -1.0
  • eval_map_checked: 0.6635
  • eval_mar_100_checked: 0.7876
  • eval_map_unchecked: 0.6118
  • eval_mar_100_unchecked: 0.694
  • eval_runtime: 7.4046
  • eval_samples_per_second: 17.151
  • eval_steps_per_second: 2.161
  • epoch: 11.0
  • step: 990

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 300
  • num_epochs: 40

Framework versions

  • Transformers 4.56.0
  • Pytorch 2.8.0+cu126
  • Datasets 4.0.0
  • Tokenizers 0.22.0
Downloads last month
-
Safetensors
Model size
42.9M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for wendys-llc/rtdetr-v2-r50-chkbx

Finetuned
(18)
this model