xypkent commited on
Commit
52715b0
·
verified ·
1 Parent(s): 3bafd77

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
README.md ADDED
@@ -0,0 +1,240 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-VL-7B-Instruct
3
+ library_name: peft
4
+ license: apache-2.0
5
+ language:
6
+ - en
7
+ - zh
8
+ pipeline_tag: image-text-to-text
9
+ tags:
10
+ - visualization
11
+ - quality-assessment
12
+ - lora
13
+ - qwen2.5-vl
14
+ - visjudge
15
+ - aesthetics
16
+ - grpo
17
+ datasets:
18
+ - xypkent/VisJudgeBench
19
+ ---
20
+
21
+ # VisJudge: Qwen2.5-VL-7B LoRA for Visualization Quality Assessment
22
+
23
+ [![arXiv](https://img.shields.io/badge/arXiv-2510.22373-b31b1b.svg)](https://arxiv.org/abs/2510.22373)
24
+ [![Dataset](https://img.shields.io/badge/🤗-VisJudgeBench-yellow)](https://huggingface.co/datasets/xypkent/VisJudgeBench)
25
+
26
+ **VisJudge** is a specialized model fine-tuned on [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) for visualization quality and aesthetics assessment. It significantly outperforms state-of-the-art multimodal large language models (MLLMs) including GPT-5, GPT-4o, and Claude-4-Sonnet on visualization evaluation tasks.
27
+
28
+ 📄 **Paper**: [VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations](https://arxiv.org/abs/2510.22373)
29
+
30
+ ## 🎯 Model Overview
31
+
32
+ VisJudge addresses the significant gaps between general MLLMs and human expert judgment in visualization quality assessment. Trained using **GRPO (Group Relative Policy Optimization)** on the **VisJudgeBench** dataset containing 3,090 expert-annotated samples, VisJudge evaluates visualizations across the **Fidelity-Expressiveness-Aesthetics** framework.
33
+
34
+ ### Key Features
35
+
36
+ - **🏆 State-of-the-Art Performance**: 19.8% MAE improvement over GPT-5
37
+ - **📊 Six-Dimensional Evaluation**: Data Fidelity, Semantic Readability, Insight Discovery, Design Style, Visual Composition, Color Harmony
38
+ - **🎨 Comprehensive Coverage**: Supports 32 visualization types including single charts, multi-panel views, and dashboards
39
+ - **🔬 Expert-Level Assessment**: Achieves 0.681 correlation with human experts (vs. 0.429 for GPT-5)
40
+
41
+ ## 🏆 Performance Benchmarks
42
+
43
+ ### Overall Performance Comparison
44
+
45
+ | Model | MAE ↓ | MSE ↓ | Correlation ↑ |
46
+ | ------------------ | --------------- | --------------- | --------------- |
47
+ | **VisJudge** | **0.442** | **0.306** | **0.681** |
48
+ | GPT-5 | 0.551 | 0.484 | 0.429 |
49
+ | GPT-4o | 0.609 | 0.575 | 0.482 |
50
+ | Claude-4-Sonnet | 0.618 | 0.596 | 0.470 |
51
+ | Gemini-2.0-Flash | 0.680 | 0.716 | 0.395 |
52
+ | Gemini-2.5-Pro | 0.661 | 0.674 | 0.266 |
53
+ | Claude-3.5-Sonnet | 0.823 | 1.006 | 0.395 |
54
+ | Qwen2.5-VL-7B | 1.048 | 1.502 | 0.322 |
55
+
56
+ **Key Achievements:**
57
+ - 🎯 **19.8% MAE improvement** over GPT-5 (0.551 → 0.442)
58
+ - 📈 **58.7% higher correlation** with human experts vs GPT-5 (0.429 → 0.681)
59
+ - 🏅 **Outperforms all commercial MLLMs** across all metrics
60
+
61
+ ### Performance by Evaluation Dimensions (MAE ↓)
62
+
63
+ | Model | Overall | Data Fidelity | Semantic Readability | Insight Discovery | Design Style | Visual Composition | Color Harmony |
64
+ | ------------------ | ------- | ------------- | -------------------- | ----------------- | ------------ | ------------------ | ------------- |
65
+ | **VisJudge** | **0.442** | **0.662** | **0.649** | **0.679** | **0.581** | **0.546** | **0.604** |
66
+ | GPT-5 | 0.551 | 0.861 | 0.780 | 0.776 | 0.648 | 0.698 | 0.682 |
67
+ | GPT-4o | 0.609 | 0.986 | 0.804 | 0.742 | 0.608 | 0.694 | 0.657 |
68
+
69
+ ## 🔍 Evaluation Framework
70
+
71
+ VisJudge evaluates visualizations across three fundamental dimensions with six measurable metrics:
72
+
73
+ ### 1. Fidelity - Data Accuracy and Truthfulness
74
+ - **Data Fidelity**: Ensures visual encodings accurately reflect original data without misleading interpretations
75
+
76
+ ### 2. Expressiveness - Information Clarity and Understandability
77
+ - **Semantic Readability**: Assesses clarity of information encoding and unambiguous decoding
78
+ - **Insight Discovery**: Evaluates effectiveness in revealing data patterns, trends, and outliers
79
+
80
+ ### 3. Aesthetics - Visual Aesthetics and Refinement
81
+ - **Design Style**: Measures innovation and uniqueness of design elements
82
+ - **Visual Composition**: Focuses on spatial layout, balance, and element positioning
83
+ - **Color Harmony**: Assesses color coordination and functional effectiveness
84
+
85
+ ## 🚀 Usage
86
+
87
+ ### Installation
88
+
89
+ ```bash
90
+ pip install transformers peft torch pillow
91
+ ```
92
+
93
+ ### Quick Start
94
+
95
+ ```python
96
+ from peft import PeftModel
97
+ from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
98
+ from PIL import Image
99
+ import torch
100
+
101
+ # Load base model
102
+ base_model = Qwen2VLForConditionalGeneration.from_pretrained(
103
+ "Qwen/Qwen2.5-VL-7B-Instruct",
104
+ torch_dtype=torch.bfloat16,
105
+ device_map="auto"
106
+ )
107
+
108
+ # Load VisJudge LoRA adapter
109
+ model = PeftModel.from_pretrained(
110
+ base_model,
111
+ "xypkent/visjudge-qwen2.5-vl-7b-lora"
112
+ )
113
+
114
+ # Load processor
115
+ processor = AutoProcessor.from_pretrained("Qwen/Qwen2.5-VL-7B-Instruct")
116
+
117
+ # Prepare your visualization
118
+ image = Image.open("path/to/your/visualization.png")
119
+
120
+ # Evaluation prompt
121
+ messages = [
122
+ {
123
+ "role": "user",
124
+ "content": [
125
+ {"type": "image", "image": image},
126
+ {"type": "text", "text": """Please evaluate this visualization across six dimensions on a scale of 1-5:
127
+
128
+ 1. Data Fidelity: Does the visual encoding accurately reflect the data?
129
+ 2. Semantic Readability: Is the information clearly encoded and easy to decode?
130
+ 3. Insight Discovery: Does it effectively reveal patterns and insights?
131
+ 4. Design Style: Is the design innovative and distinctive?
132
+ 5. Visual Composition: Is the layout balanced and well-organized?
133
+ 6. Color Harmony: Are colors coordinated and effective?
134
+
135
+ Provide scores and explanations for each dimension."""}
136
+ ]
137
+ }
138
+ ]
139
+
140
+ # Process and generate
141
+ text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
142
+ inputs = processor(text=[text], images=[image], return_tensors="pt").to(model.device)
143
+
144
+ with torch.no_grad():
145
+ outputs = model.generate(**inputs, max_new_tokens=512)
146
+
147
+ response = processor.batch_decode(outputs, skip_special_tokens=True)[0]
148
+ print(response)
149
+ ```
150
+
151
+ ### Example Output
152
+
153
+ ```
154
+ Data Fidelity: 4.0 - The visual encoding accurately represents the data with appropriate scales.
155
+ Semantic Readability: 4.5 - Clear labels and legend make the information easy to understand.
156
+ Insight Discovery: 3.5 - The chart reveals basic trends but could better highlight key patterns.
157
+ Design Style: 3.0 - Uses standard design elements without much innovation.
158
+ Visual Composition: 4.0 - Well-balanced layout with good spacing between elements.
159
+ Color Harmony: 3.5 - Color palette is coordinated but could be more distinctive.
160
+ Overall Score: 3.75
161
+ ```
162
+
163
+ ## 📊 Training Details
164
+
165
+ ### Dataset
166
+
167
+ - **Name**: [VisJudgeBench](https://huggingface.co/datasets/xypkent/VisJudgeBench)
168
+ - **Size**: 3,090 expert-annotated visualization samples
169
+ - **Types**: Single visualizations, multi-panel views, dashboards
170
+ - **Coverage**: 32 chart types including bar charts, line charts, heatmaps, sankey diagrams, treemaps, dashboards, and more
171
+
172
+ ### Training Method
173
+
174
+ - **Base Model**: Qwen2.5-VL-7B-Instruct
175
+ - **Fine-tuning Method**: LoRA (Low-Rank Adaptation) + GRPO (Group Relative Policy Optimization)
176
+ - **LoRA Configuration**:
177
+ - Rank: 128
178
+ - Alpha: 256
179
+ - Target Modules: All attention and MLP layers
180
+ - **Training Framework**: PEFT 0.14.0
181
+
182
+ ### Key Improvements
183
+
184
+ ✅ **Human-like Scoring**: Mean score μ=3.11 (vs. human μ=3.13), eliminating the score inflation bias seen in other models
185
+ ✅ **Balanced Assessment**: Avoids both overly conservative (Gemini-2.5-Pro μ=3.02) and overly generous (Qwen2.5-VL-7B μ=3.89) biases
186
+ ✅ **Complexity Handling**: Maintains performance across single visualizations (0.577), multi-panel views (0.565), and complex dashboards (0.375)
187
+
188
+ ## 📈 Supported Visualization Types
189
+
190
+ ### Single Visualizations (22 types)
191
+ Bar Chart, Pie Chart, Line Chart, Area Chart, Treemap, Sankey Diagram, Heatmap, Scatter Plot, Histogram, Donut Chart, Funnel Chart, Bubble Chart, Choropleth Map, Radar Chart, Network Graph, Candlestick Chart, Gauge Chart, Box Plot, Point Map, Word Cloud, Violin Plot, and more
192
+
193
+ ### Multiple Visualizations (5 types)
194
+ Comparison Views, Small Multiples, Coordinated Views, Overview+Detail
195
+
196
+ ### Dashboards (5 types)
197
+ Analytical Dashboard, Operational Dashboard, Interactive Dashboard, Strategic Dashboard
198
+
199
+ ## ⚠️ Limitations
200
+
201
+ - Performance degrades with increasing visualization complexity (dashboards are most challenging)
202
+ - Best suited for visualization types seen during training
203
+ - Aesthetic dimensions (especially Visual Composition in complex dashboards) remain challenging
204
+ - Inherits any biases present in the base Qwen2.5-VL model
205
+
206
+ ## 📝 Citation
207
+
208
+ If you use VisJudge in your research, please cite:
209
+
210
+ ```bibtex
211
+ @misc{xie2025visjudge,
212
+ title={VisJudge-Bench: Aesthetics and Quality Assessment of Visualizations},
213
+ author={Yupeng Xie and Zhiyang Zhang and Yifan Wu and Sirong Lu and Jiayi Zhang and Zhaoyang Yu and Jinlin Wang and Sirui Hong and Bang Liu and Chenglin Wu and Yuyu Luo},
214
+ year={2025},
215
+ eprint={2510.22373},
216
+ archivePrefix={arXiv},
217
+ primaryClass={cs.CL},
218
+ url={https://arxiv.org/abs/2510.22373}
219
+ }
220
+ ```
221
+
222
+ ## 🔗 Resources
223
+
224
+ - 📄 **Paper**: [arXiv:2510.22373](https://arxiv.org/abs/2510.22373)
225
+ - 🤗 **Dataset**: [VisJudgeBench on Hugging Face](https://huggingface.co/datasets/xypkent/VisJudgeBench)
226
+ - 💻 **GitHub**: [VisJudgeBench Repository](https://github.com/xypkent/VisJudgeBench)
227
+ - 📧 **Contact**: [email protected]
228
+
229
+ ## 📜 License
230
+
231
+ This model is released under the Apache 2.0 License, consistent with the base Qwen2.5-VL model.
232
+
233
+ ## 🙏 Acknowledgments
234
+
235
+ This model is built upon [Qwen2.5-VL-7B-Instruct](https://huggingface.co/Qwen/Qwen2.5-VL-7B-Instruct) by Alibaba Cloud. We thank the Qwen team for their excellent foundation model.
236
+
237
+ ---
238
+
239
+ **Developed by**: Yupeng Xie and team at HKUST-GZ
240
+ **Framework Versions**: PEFT 0.14.0 | Transformers 4.x | PyTorch 2.x
adapter_config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/root/.cache/modelscope/hub/models/qwen/Qwen2___5-VL-7B-Instruct",
5
+ "bias": "none",
6
+ "eva_config": null,
7
+ "exclude_modules": null,
8
+ "fan_in_fan_out": false,
9
+ "inference_mode": true,
10
+ "init_lora_weights": true,
11
+ "layer_replication": null,
12
+ "layers_pattern": null,
13
+ "layers_to_transform": null,
14
+ "loftq_config": {},
15
+ "lora_alpha": 128,
16
+ "lora_bias": false,
17
+ "lora_dropout": 0.05,
18
+ "megatron_config": null,
19
+ "megatron_core": "megatron.core",
20
+ "modules_to_save": [],
21
+ "peft_type": "LORA",
22
+ "r": 128,
23
+ "rank_pattern": {},
24
+ "revision": null,
25
+ "target_modules": "^(model.*\\.(up_proj|q_proj|down_proj|k_proj|gate_proj|v_proj|o_proj))$",
26
+ "task_type": "CAUSAL_LM",
27
+ "use_dora": false,
28
+ "use_rslora": false
29
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:417f2180e42957b2d3d760bc677ed134db8bfba79d5bf5ae9f6d69de5b2c8d82
3
+ size 645976488
additional_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"lora_dtype": null, "lorap_lr_ratio": null, "lorap_emb_lr": 1e-06}
args.json ADDED
@@ -0,0 +1,460 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "output_dir": "/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250915_221157/v0-20250915-221215",
3
+ "overwrite_output_dir": false,
4
+ "do_train": false,
5
+ "do_eval": false,
6
+ "do_predict": false,
7
+ "eval_strategy": "steps",
8
+ "prediction_loss_only": false,
9
+ "per_device_train_batch_size": 1,
10
+ "per_device_eval_batch_size": 2,
11
+ "per_gpu_train_batch_size": null,
12
+ "per_gpu_eval_batch_size": null,
13
+ "gradient_accumulation_steps": 4,
14
+ "eval_accumulation_steps": null,
15
+ "eval_delay": 0,
16
+ "torch_empty_cache_steps": null,
17
+ "learning_rate": 1e-05,
18
+ "weight_decay": 0.01,
19
+ "adam_beta1": 0.9,
20
+ "adam_beta2": 0.95,
21
+ "adam_epsilon": 1e-08,
22
+ "max_grad_norm": 0.5,
23
+ "num_train_epochs": 5.0,
24
+ "max_steps": -1,
25
+ "lr_scheduler_type": "cosine",
26
+ "lr_scheduler_kwargs": null,
27
+ "warmup_ratio": 0.1,
28
+ "warmup_steps": 0,
29
+ "log_level": "passive",
30
+ "log_level_replica": "warning",
31
+ "log_on_each_node": true,
32
+ "logging_dir": "/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250915_221157/v0-20250915-221215/runs",
33
+ "logging_strategy": "steps",
34
+ "logging_first_step": true,
35
+ "logging_steps": 1,
36
+ "logging_nan_inf_filter": true,
37
+ "save_strategy": "epoch",
38
+ "save_steps": 500,
39
+ "save_total_limit": 2,
40
+ "save_safetensors": true,
41
+ "save_on_each_node": false,
42
+ "save_only_model": false,
43
+ "restore_callback_states_from_checkpoint": false,
44
+ "no_cuda": false,
45
+ "use_cpu": false,
46
+ "use_mps_device": false,
47
+ "seed": 42,
48
+ "data_seed": 42,
49
+ "jit_mode_eval": false,
50
+ "use_ipex": false,
51
+ "bf16": true,
52
+ "fp16": false,
53
+ "fp16_opt_level": "O1",
54
+ "half_precision_backend": "auto",
55
+ "bf16_full_eval": false,
56
+ "fp16_full_eval": false,
57
+ "tf32": null,
58
+ "local_rank": 0,
59
+ "ddp_backend": null,
60
+ "tpu_num_cores": null,
61
+ "tpu_metrics_debug": false,
62
+ "debug": null,
63
+ "dataloader_drop_last": false,
64
+ "eval_steps": 25.0,
65
+ "dataloader_num_workers": 8,
66
+ "dataloader_prefetch_factor": null,
67
+ "past_index": -1,
68
+ "run_name": "/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250915_221157/v0-20250915-221215",
69
+ "disable_tqdm": null,
70
+ "remove_unused_columns": false,
71
+ "label_names": null,
72
+ "load_best_model_at_end": false,
73
+ "metric_for_best_model": "reward",
74
+ "greater_is_better": true,
75
+ "ignore_data_skip": false,
76
+ "fsdp": "",
77
+ "fsdp_min_num_params": 0,
78
+ "fsdp_config": null,
79
+ "tp_size": 0,
80
+ "fsdp_transformer_layer_cls_to_wrap": null,
81
+ "accelerator_config": {
82
+ "dispatch_batches": false
83
+ },
84
+ "deepspeed": {
85
+ "fp16": {
86
+ "enabled": "auto",
87
+ "loss_scale": 0,
88
+ "loss_scale_window": 1000,
89
+ "initial_scale_power": 16,
90
+ "hysteresis": 2,
91
+ "min_loss_scale": 1
92
+ },
93
+ "bf16": {
94
+ "enabled": "auto"
95
+ },
96
+ "zero_optimization": {
97
+ "stage": 2,
98
+ "offload_optimizer": {
99
+ "device": "none",
100
+ "pin_memory": true
101
+ },
102
+ "allgather_partitions": true,
103
+ "allgather_bucket_size": 200000000.0,
104
+ "overlap_comm": false,
105
+ "reduce_scatter": true,
106
+ "reduce_bucket_size": 200000000.0,
107
+ "contiguous_gradients": true
108
+ },
109
+ "gradient_accumulation_steps": "auto",
110
+ "gradient_clipping": "auto",
111
+ "steps_per_print": 2000,
112
+ "train_batch_size": "auto",
113
+ "train_micro_batch_size_per_gpu": "auto",
114
+ "wall_clock_breakdown": false
115
+ },
116
+ "label_smoothing_factor": 0.0,
117
+ "optim": "adamw_torch",
118
+ "optim_args": null,
119
+ "adafactor": false,
120
+ "group_by_length": false,
121
+ "length_column_name": "length",
122
+ "report_to": [
123
+ "wandb"
124
+ ],
125
+ "ddp_find_unused_parameters": null,
126
+ "ddp_bucket_cap_mb": null,
127
+ "ddp_broadcast_buffers": null,
128
+ "dataloader_pin_memory": true,
129
+ "dataloader_persistent_workers": false,
130
+ "skip_memory_metrics": true,
131
+ "use_legacy_prediction_loop": false,
132
+ "push_to_hub": false,
133
+ "resume_from_checkpoint": "/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250912_145315/v0-20250912-145334/checkpoint-3627",
134
+ "hub_model_id": null,
135
+ "hub_strategy": "every_save",
136
+ "hub_token": null,
137
+ "hub_private_repo": null,
138
+ "hub_always_push": false,
139
+ "gradient_checkpointing": true,
140
+ "gradient_checkpointing_kwargs": null,
141
+ "include_inputs_for_metrics": false,
142
+ "include_for_metrics": [],
143
+ "eval_do_concat_batches": true,
144
+ "fp16_backend": "auto",
145
+ "push_to_hub_model_id": null,
146
+ "push_to_hub_organization": null,
147
+ "push_to_hub_token": null,
148
+ "mp_parameters": "",
149
+ "auto_find_batch_size": false,
150
+ "full_determinism": false,
151
+ "torchdynamo": null,
152
+ "ray_scope": "last",
153
+ "ddp_timeout": 18000000,
154
+ "torch_compile": false,
155
+ "torch_compile_backend": null,
156
+ "torch_compile_mode": null,
157
+ "include_tokens_per_second": false,
158
+ "include_num_input_tokens_seen": false,
159
+ "neftune_noise_alpha": null,
160
+ "optim_target_modules": null,
161
+ "batch_eval_metrics": false,
162
+ "eval_on_start": false,
163
+ "use_liger_kernel": false,
164
+ "eval_use_gather_object": false,
165
+ "average_tokens_across_devices": false,
166
+ "sortish_sampler": false,
167
+ "predict_with_generate": false,
168
+ "generation_max_length": null,
169
+ "generation_num_beams": null,
170
+ "generation_config": null,
171
+ "vit_gradient_checkpointing": null,
172
+ "check_model": true,
173
+ "acc_strategy": "token",
174
+ "train_dataloader_shuffle": true,
175
+ "max_epochs": null,
176
+ "aligner_lr": null,
177
+ "vit_lr": null,
178
+ "optimizer": null,
179
+ "use_logits_to_keep": null,
180
+ "channels": null,
181
+ "ds3_gather_for_generation": true,
182
+ "metric_warmup_step": 0,
183
+ "fsdp_num": 1,
184
+ "acc_steps": 1,
185
+ "eval_use_evalscope": false,
186
+ "eval_datasets": [],
187
+ "eval_limit": null,
188
+ "eval_datasets_args": null,
189
+ "eval_generation_config": null,
190
+ "model": "qwen/Qwen2.5-VL-7B-Instruct",
191
+ "model_type": "qwen2_5_vl",
192
+ "model_revision": null,
193
+ "task_type": "causal_lm",
194
+ "torch_dtype": "bfloat16",
195
+ "attn_impl": null,
196
+ "num_labels": null,
197
+ "problem_type": null,
198
+ "rope_scaling": null,
199
+ "device_map": null,
200
+ "max_memory": {},
201
+ "local_repo_path": null,
202
+ "init_strategy": null,
203
+ "template": "qwen2_5_vl",
204
+ "system": "You are a rigorous data visualization evaluation expert.\n\nFor each visualization, provide a detailed evaluation based on the classical \"Fidelity-Expressiveness-Elegance\" framework across the following six dimensions:\n\n- Fidelity: Data Fidelity - whether the visual representation accurately reflects the underlying data\n- Expressiveness: Semantic Readability, Insight Discovery - whether information is clearly conveyed and meaningful patterns are discoverable \n- Elegance: Design Style, Visual Composition, Color Harmony - whether the visualization has aesthetic appeal and professional design quality\n\nFor each dimension, give a score (1-5) and reasoning based on the evaluation criteria. The score for each metric should be an integer from 1 to 5, determined strictly according to the metric descriptions and scoring criteria.\n\nResponse format (STRICT):\n{\n \"data_fidelity\": {\"score\": 1-5, \"reasoning\": \"Your explanation here.\"},\n \"semantic_readability\": {\"score\": 1-5, \"reasoning\": \"Your explanation here.\"},\n \"insight_discovery\": {\"score\": 1-5, \"reasoning\": \"Your explanation here.\"},\n \"design_style\": {\"score\": 1-5, \"reasoning\": \"Your explanation here.\"},\n \"visual_composition\": {\"score\": 1-5, \"reasoning\": \"Your explanation here.\"},\n \"color_harmony\": {\"score\": 1-5, \"reasoning\": \"Your explanation here.\"},\n \"average_score\": \"the average of the above six scores, rounded to 2 decimals\"\n}\n\nWhere for each metric, score should be an integer from 1 to 5 based on the metric descriptions and scoring criteria, and reasoning should explain your choice. average_score is the average of all six scores rounded to 2 decimal places.\nDo NOT output any text before or after the JSON object.",
205
+ "max_length": null,
206
+ "truncation_strategy": "left",
207
+ "max_pixels": null,
208
+ "agent_template": null,
209
+ "norm_bbox": null,
210
+ "use_chat_template": true,
211
+ "padding_free": false,
212
+ "padding_side": "right",
213
+ "loss_scale": "last_round",
214
+ "sequence_parallel_size": 1,
215
+ "response_prefix": null,
216
+ "template_backend": "swift",
217
+ "dataset": [
218
+ "swift/plugin/grpo_dataset_expert_filtered/backup/train_dataset.jsonl"
219
+ ],
220
+ "val_dataset": [],
221
+ "split_dataset_ratio": 0.01,
222
+ "dataset_num_proc": 1,
223
+ "load_from_cache_file": true,
224
+ "dataset_shuffle": true,
225
+ "val_dataset_shuffle": false,
226
+ "streaming": false,
227
+ "interleave_prob": null,
228
+ "stopping_strategy": "first_exhausted",
229
+ "shuffle_buffer_size": 1000,
230
+ "download_mode": "reuse_dataset_if_exists",
231
+ "columns": {},
232
+ "strict": false,
233
+ "model_name": null,
234
+ "model_author": null,
235
+ "custom_dataset_info": [],
236
+ "quant_method": null,
237
+ "quant_bits": null,
238
+ "hqq_axis": null,
239
+ "bnb_4bit_compute_dtype": "bfloat16",
240
+ "bnb_4bit_quant_type": "nf4",
241
+ "bnb_4bit_use_double_quant": true,
242
+ "bnb_4bit_quant_storage": null,
243
+ "max_new_tokens": 1024,
244
+ "temperature": 0.8,
245
+ "top_k": 50,
246
+ "top_p": 0.9,
247
+ "repetition_penalty": 1.0,
248
+ "num_beams": 1,
249
+ "stream": false,
250
+ "stop_words": [],
251
+ "logprobs": false,
252
+ "top_logprobs": null,
253
+ "ckpt_dir": null,
254
+ "lora_modules": [],
255
+ "tuner_backend": "peft",
256
+ "train_type": "lora",
257
+ "adapters": [],
258
+ "external_plugins": [
259
+ "swift/plugin/plugin.py"
260
+ ],
261
+ "model_kwargs": {},
262
+ "load_args": false,
263
+ "load_data_args": false,
264
+ "packing": false,
265
+ "packing_cache": null,
266
+ "custom_register_path": [],
267
+ "use_hf": false,
268
+ "ignore_args_error": false,
269
+ "use_swift_lora": false,
270
+ "freeze_parameters": [
271
+ "visual",
272
+ "visual.merger"
273
+ ],
274
+ "freeze_parameters_regex": null,
275
+ "freeze_parameters_ratio": 0.0,
276
+ "trainable_parameters": [],
277
+ "trainable_parameters_regex": null,
278
+ "freeze_llm": false,
279
+ "freeze_vit": true,
280
+ "freeze_aligner": true,
281
+ "target_modules": [
282
+ "all-linear"
283
+ ],
284
+ "target_regex": null,
285
+ "modules_to_save": [],
286
+ "lora_rank": 128,
287
+ "lora_alpha": 128,
288
+ "lora_dropout": 0.05,
289
+ "lora_bias": "none",
290
+ "lora_dtype": null,
291
+ "lorap_lr_ratio": null,
292
+ "use_rslora": false,
293
+ "use_dora": false,
294
+ "lora_ga_batch_size": 2,
295
+ "lora_ga_iters": 2,
296
+ "lora_ga_max_length": 1024,
297
+ "lora_ga_direction": "ArB2r",
298
+ "lora_ga_scale": "stable",
299
+ "lora_ga_stable_gamma": 16,
300
+ "init_weights": true,
301
+ "fourier_n_frequency": 2000,
302
+ "fourier_scaling": 300.0,
303
+ "boft_block_size": 4,
304
+ "boft_block_num": 0,
305
+ "boft_n_butterfly_factor": 1,
306
+ "boft_dropout": 0.0,
307
+ "vera_rank": 256,
308
+ "vera_projection_prng_key": 0,
309
+ "vera_dropout": 0.0,
310
+ "vera_d_initial": 0.1,
311
+ "adapter_act": "gelu",
312
+ "adapter_length": 128,
313
+ "use_galore": false,
314
+ "galore_target_modules": null,
315
+ "galore_rank": 128,
316
+ "galore_update_proj_gap": 50,
317
+ "galore_scale": 1.0,
318
+ "galore_proj_type": "std",
319
+ "galore_optim_per_parameter": false,
320
+ "galore_with_embedding": false,
321
+ "galore_quantization": false,
322
+ "galore_proj_quant": false,
323
+ "galore_proj_bits": 4,
324
+ "galore_proj_group_size": 256,
325
+ "galore_cos_threshold": 0.4,
326
+ "galore_gamma_proj": 2,
327
+ "galore_queue_size": 5,
328
+ "adalora_target_r": 8,
329
+ "adalora_init_r": 12,
330
+ "adalora_tinit": 0,
331
+ "adalora_tfinal": 0,
332
+ "adalora_deltaT": 1,
333
+ "adalora_beta1": 0.85,
334
+ "adalora_beta2": 0.85,
335
+ "adalora_orth_reg_weight": 0.5,
336
+ "llamapro_num_new_blocks": 4,
337
+ "llamapro_num_groups": null,
338
+ "lisa_activated_layers": 0,
339
+ "lisa_step_interval": 20,
340
+ "reft_layer_key": null,
341
+ "reft_layers": null,
342
+ "reft_rank": 4,
343
+ "reft_intervention_type": "LoreftIntervention",
344
+ "reft_args": null,
345
+ "swanlab_token": null,
346
+ "swanlab_project": null,
347
+ "swanlab_workspace": null,
348
+ "swanlab_exp_name": null,
349
+ "swanlab_mode": "cloud",
350
+ "add_version": true,
351
+ "resume_only_model": false,
352
+ "create_checkpoint_symlink": false,
353
+ "lazy_tokenize": true,
354
+ "loss_type": "grpo",
355
+ "metric": null,
356
+ "zero_hpz_partition_size": null,
357
+ "sft_alpha": 0,
358
+ "reward_model": null,
359
+ "reward_adapters": [],
360
+ "reward_model_type": null,
361
+ "reward_model_revision": null,
362
+ "num_ppo_epochs": 4,
363
+ "whiten_rewards": false,
364
+ "kl_coef": 0.1,
365
+ "cliprange": 0.2,
366
+ "vf_coef": 0.1,
367
+ "cliprange_value": 0.2,
368
+ "gamma": 1.0,
369
+ "lam": 0.95,
370
+ "num_mini_batches": 1,
371
+ "local_rollout_forward_batch_size": 64,
372
+ "num_sample_generations": 10,
373
+ "response_length": 1024,
374
+ "missing_eos_penalty": null,
375
+ "epsilon": 0.2,
376
+ "epsilon_high": null,
377
+ "delta": null,
378
+ "num_infer_workers": null,
379
+ "vllm_mode": "colocate",
380
+ "vllm_device": null,
381
+ "vllm_gpu_memory_utilization": 0.8,
382
+ "vllm_max_model_len": 8192,
383
+ "vllm_max_num_seqs": null,
384
+ "vllm_enforce_eager": false,
385
+ "vllm_limit_mm_per_prompt": null,
386
+ "vllm_enable_prefix_caching": true,
387
+ "vllm_tensor_parallel_size": 1,
388
+ "vllm_server_base_url": null,
389
+ "vllm_server_host": null,
390
+ "vllm_server_port": 8000,
391
+ "vllm_server_timeout": 240.0,
392
+ "cosine_min_len_value_wrong": -0.5,
393
+ "cosine_max_len_value_wrong": 0.0,
394
+ "cosine_min_len_value_correct": 1.0,
395
+ "cosine_max_len_value_correct": 0.5,
396
+ "cosine_max_len": null,
397
+ "repetition_n_grams": 3,
398
+ "repetition_max_penalty": -1.0,
399
+ "reward_model_plugin": null,
400
+ "sync_ref_model": false,
401
+ "ref_model_sync_steps": 512,
402
+ "ref_model_mixup_alpha": 0.6,
403
+ "async_generate": false,
404
+ "tensor_parallel_size": null,
405
+ "sleep_level": 0,
406
+ "move_model_batches": null,
407
+ "offload_optimizer": false,
408
+ "offload_model": false,
409
+ "gc_collect_after_offload": false,
410
+ "multi_turn_func": null,
411
+ "multi_turn_scheduler": null,
412
+ "max_turns": null,
413
+ "completion_length_limit_scope": "per_round",
414
+ "dynamic_sample": false,
415
+ "max_resample_times": 3,
416
+ "overlong_filter": false,
417
+ "soft_max_length": null,
418
+ "soft_cache_length": null,
419
+ "scale_rewards": true,
420
+ "wandb_log_unique_prompts": null,
421
+ "generation_batch_size": null,
422
+ "steps_per_generation": null,
423
+ "num_generations": 8,
424
+ "reward_funcs": [
425
+ "external_visualization_json_combined"
426
+ ],
427
+ "reward_weights": null,
428
+ "log_completions": true,
429
+ "use_vllm": true,
430
+ "num_iterations": 1,
431
+ "teacher_model": null,
432
+ "teacher_adapters": [],
433
+ "teacher_model_type": null,
434
+ "teacher_model_revision": null,
435
+ "rlhf_type": "grpo",
436
+ "ref_model": null,
437
+ "ref_model_type": null,
438
+ "ref_model_revision": null,
439
+ "beta": 0.01,
440
+ "label_smoothing": 0,
441
+ "max_completion_length": 1024,
442
+ "rpo_alpha": 1.0,
443
+ "cpo_alpha": 1.0,
444
+ "simpo_gamma": 1,
445
+ "desirable_weight": 1.0,
446
+ "undesirable_weight": 1.0,
447
+ "center_rewards_coefficient": null,
448
+ "lmbda": 0.5,
449
+ "seq_kd": false,
450
+ "rank": 0,
451
+ "global_world_size": 4,
452
+ "local_world_size": 4,
453
+ "model_suffix": "Qwen2.5-VL-7B-Instruct",
454
+ "model_info": "ModelInfo(model_type='qwen2_5_vl', model_dir='/root/.cache/modelscope/hub/models/qwen/Qwen2___5-VL-7B-Instruct', torch_dtype=torch.bfloat16, max_model_len=128000, quant_method=None, quant_bits=None, rope_scaling={'type': 'default', 'mrope_section': [16, 24, 24], 'rope_type': 'default'}, config=None, task_type='causal_lm', num_labels=None)",
455
+ "model_meta": "ModelMeta(model_type='qwen2_5_vl', model_groups=[ModelGroup(models=[Model(ms_model_id='Qwen/Qwen2.5-VL-3B-Instruct', hf_model_id='Qwen/Qwen2.5-VL-3B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-VL-7B-Instruct', hf_model_id='Qwen/Qwen2.5-VL-7B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-VL-32B-Instruct', hf_model_id='Qwen/Qwen2.5-VL-32B-Instruct', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-VL-72B-Instruct', hf_model_id='Qwen/Qwen2.5-VL-72B-Instruct', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[]), ModelGroup(models=[Model(ms_model_id='Qwen/Qwen2.5-VL-3B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-VL-3B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-VL-7B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-VL-7B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-VL-32B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-VL-32B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None), Model(ms_model_id='Qwen/Qwen2.5-VL-72B-Instruct-AWQ', hf_model_id='Qwen/Qwen2.5-VL-72B-Instruct-AWQ', model_path=None, ms_revision=None, hf_revision=None)], ignore_patterns=None, requires=None, tags=[])], template='qwen2_5_vl', get_function=<function get_model_tokenizer_qwen2_5_vl at 0x7f8943e59a20>, model_arch='qwen2_vl', architectures=['Qwen2_5_VLForConditionalGeneration'], additional_saved_files=[], torch_dtype=None, is_multimodal=True, is_reward=False, task_type=None, ignore_patterns=None, requires=['transformers>=4.49', 'qwen_vl_utils>=0.0.6', 'decord'], tags=['vision', 'video'])",
456
+ "model_dir": "/root/.cache/modelscope/hub/models/qwen/Qwen2___5-VL-7B-Instruct",
457
+ "hub": "<class 'swift.hub.hub.MSHub'>",
458
+ "evaluation_strategy": "steps",
459
+ "training_args": "GRPOConfig(output_dir='/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250915_221157/v0-20250915-221215', overwrite_output_dir=False, do_train=False, do_eval=True, do_predict=False, eval_strategy=<IntervalStrategy.STEPS: 'steps'>, prediction_loss_only=False, per_device_train_batch_size=1, per_device_eval_batch_size=2, per_gpu_train_batch_size=None, per_gpu_eval_batch_size=None, gradient_accumulation_steps=4, eval_accumulation_steps=None, eval_delay=0, torch_empty_cache_steps=None, learning_rate=1e-05, weight_decay=0.01, adam_beta1=0.9, adam_beta2=0.95, adam_epsilon=1e-08, max_grad_norm=0.5, num_train_epochs=5.0, max_steps=-1, lr_scheduler_type=<SchedulerType.COSINE: 'cosine'>, lr_scheduler_kwargs=None, warmup_ratio=0.1, warmup_steps=0, log_level='passive', log_level_replica='warning', log_on_each_node=True, logging_dir='/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250915_221157/v0-20250915-221215/runs', logging_strategy=<IntervalStrategy.STEPS: 'steps'>, logging_first_step=True, logging_steps=1, logging_nan_inf_filter=True, save_strategy=<SaveStrategy.EPOCH: 'epoch'>, save_steps=500, save_total_limit=2, save_safetensors=True, save_on_each_node=False, save_only_model=False, restore_callback_states_from_checkpoint=False, no_cuda=False, use_cpu=False, use_mps_device=False, seed=42, data_seed=42, jit_mode_eval=False, use_ipex=False, bf16=True, fp16=False, fp16_opt_level='O1', half_precision_backend='auto', bf16_full_eval=False, fp16_full_eval=False, tf32=None, local_rank=0, ddp_backend=None, tpu_num_cores=None, tpu_metrics_debug=False, debug=[], dataloader_drop_last=True, eval_steps=25, dataloader_num_workers=8, dataloader_prefetch_factor=10, past_index=-1, run_name='/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250915_221157/v0-20250915-221215', disable_tqdm=False, remove_unused_columns=False, label_names=None, load_best_model_at_end=False, metric_for_best_model='reward', greater_is_better=True, ignore_data_skip=False, fsdp=[], fsdp_min_num_params=0, fsdp_config={'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}, tp_size=0, fsdp_transformer_layer_cls_to_wrap=None, accelerator_config=AcceleratorConfig(split_batches=False, dispatch_batches=False, even_batches=True, use_seedable_sampler=True, non_blocking=False, gradient_accumulation_kwargs=None, use_configured_state=False), deepspeed={'fp16': {'enabled': 'auto', 'loss_scale': 0, 'loss_scale_window': 1000, 'initial_scale_power': 16, 'hysteresis': 2, 'min_loss_scale': 1}, 'bf16': {'enabled': 'auto'}, 'zero_optimization': {'stage': 2, 'offload_optimizer': {'device': 'none', 'pin_memory': True}, 'allgather_partitions': True, 'allgather_bucket_size': 200000000.0, 'overlap_comm': False, 'reduce_scatter': True, 'reduce_bucket_size': 200000000.0, 'contiguous_gradients': True}, 'gradient_accumulation_steps': 'auto', 'gradient_clipping': 'auto', 'steps_per_print': 2000, 'train_batch_size': 'auto', 'train_micro_batch_size_per_gpu': 'auto', 'wall_clock_breakdown': False}, label_smoothing_factor=0.0, optim=<OptimizerNames.ADAMW_TORCH: 'adamw_torch'>, optim_args=None, adafactor=False, group_by_length=False, length_column_name='length', report_to=['wandb'], ddp_find_unused_parameters=None, ddp_bucket_cap_mb=None, ddp_broadcast_buffers=None, dataloader_pin_memory=True, dataloader_persistent_workers=False, skip_memory_metrics=True, use_legacy_prediction_loop=False, push_to_hub=False, resume_from_checkpoint='/ai/wuyifan/xyp/ms-swift/outputs/resumed_training_20250912_145315/v0-20250912-145334/checkpoint-3627', hub_model_id=None, hub_strategy=<HubStrategy.EVERY_SAVE: 'every_save'>, hub_token=None, hub_private_repo=None, hub_always_push=False, gradient_checkpointing=True, gradient_checkpointing_kwargs=None, include_inputs_for_metrics=False, include_for_metrics=[], eval_do_concat_batches=True, fp16_backend='auto', push_to_hub_model_id=None, push_to_hub_organization=None, push_to_hub_token=None, mp_parameters='', auto_find_batch_size=False, full_determinism=False, torchdynamo=None, ray_scope='last', ddp_timeout=18000000, torch_compile=False, torch_compile_backend=None, torch_compile_mode=None, include_tokens_per_second=None, include_num_input_tokens_seen=None, neftune_noise_alpha=None, optim_target_modules=None, batch_eval_metrics=False, eval_on_start=False, use_liger_kernel=False, eval_use_gather_object=False, average_tokens_across_devices=None, model_init_kwargs=None, disable_dropout=False, max_prompt_length=512, num_generations=8, max_completion_length=1024, ds3_gather_for_generation=True, shuffle_dataset=True, generation_batch_size=16, steps_per_generation=4, temperature=0.8, top_p=0.9, top_k=50, min_p=None, repetition_penalty=1.0, cache_implementation=None, use_vllm=True, vllm_server_base_url=None, vllm_mode='colocate', vllm_guided_decoding_regex=None, vllm_server_host=None, vllm_server_port=8000, vllm_server_timeout=240.0, vllm_gpu_memory_utilization=0.8, vllm_tensor_parallel_size=1, beta=0.01, num_iterations=1, epsilon=0.2, delta=None, epsilon_high=None, reward_weights=None, scale_rewards=True, loss_type='grpo', mask_truncated_completions=False, sync_ref_model=False, ref_model_mixup_alpha=0.6, ref_model_sync_steps=512, use_liger_loss=False, log_completions=True, num_completions_to_print=None, wandb_log_unique_prompts=None, vit_gradient_checkpointing=True, check_model=True, acc_strategy='token', train_dataloader_shuffle=True, max_epochs=None, aligner_lr=None, vit_lr=None, optimizer=None, use_logits_to_keep=None, channels=None, metric_warmup_step=0, fsdp_num=1, acc_steps=1, eval_use_evalscope=False, eval_datasets=[], eval_limit=None, eval_datasets_args=None, eval_generation_config=None, sft_alpha=0, train_type='lora', local_repo_path=None, galore_config=None, num_infer_workers=None, vllm_device=None, vllm_max_model_len=8192, vllm_max_num_seqs=None, vllm_enforce_eager=False, vllm_limit_mm_per_prompt={}, vllm_enable_prefix_caching=True, cosine_min_len_value_wrong=-0.5, cosine_max_len_value_wrong=0.0, cosine_min_len_value_correct=1.0, cosine_max_len_value_correct=0.5, cosine_max_len=1024, repetition_n_grams=3, repetition_max_penalty=-1.0, reward_model=None, reward_model_plugin=None, async_generate=False, tensor_parallel_size=None, sleep_level=0, move_model_batches=None, offload_optimizer=False, offload_model=False, gc_collect_after_offload=False, multi_turn_func=None, multi_turn_scheduler=None, max_turns=None, completion_length_limit_scope='per_round', dynamic_sample=False, max_resample_times=3, overlong_filter=False, soft_max_length=None, soft_cache_length=None, dataset_shuffle=True, stop_words=[])"
460
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step6045
rng_state_0.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05a06cefa39bf540093ce3a65a88d749884c4315269cd6e0381475b11140eeb7
3
+ size 14960
rng_state_1.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:73d82e879245b60e9ea994a5aee7a7261042f1da6f27e3d6e260b1627f9a8f7a
3
+ size 15024
rng_state_2.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b5c3f5fdb88b73874960e735e8373a0d0ad467f338c625afbcc471a40b0593f5
3
+ size 14960
rng_state_3.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dc1b9e46835c83f76fb2bb2d5dc3b65a3e2ce22cf3046d13660ef9f7166e082f
3
+ size 15024
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c9e10a0e9292d9f1ba58f960e50e56f7449036439a2a8b8d700733be7df90d94
3
+ size 1064
trainer_state.json ADDED
The diff for this file is too large to render. See raw diff
 
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ec85f14ff1a0daea26ef94258111d9ff14e74889c4e24c456391381a29dbc937
3
+ size 10232
zero_to_fp32.py ADDED
@@ -0,0 +1,760 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example:
14
+ # python zero_to_fp32.py . output_dir/
15
+ # or
16
+ # python zero_to_fp32.py . output_dir/ --safe_serialization
17
+
18
+ import argparse
19
+ import torch
20
+ import glob
21
+ import math
22
+ import os
23
+ import re
24
+ import gc
25
+ import json
26
+ import numpy as np
27
+ from tqdm import tqdm
28
+ from collections import OrderedDict
29
+ from dataclasses import dataclass
30
+
31
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
32
+ # DeepSpeed data structures it has to be available in the current python environment.
33
+ from deepspeed.utils import logger
34
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
35
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
36
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
37
+
38
+
39
+ @dataclass
40
+ class zero_model_state:
41
+ buffers: dict()
42
+ param_shapes: dict()
43
+ shared_params: list
44
+ ds_version: int
45
+ frozen_param_shapes: dict()
46
+ frozen_param_fragments: dict()
47
+
48
+
49
+ debug = 0
50
+
51
+ # load to cpu
52
+ device = torch.device('cpu')
53
+
54
+
55
+ def atoi(text):
56
+ return int(text) if text.isdigit() else text
57
+
58
+
59
+ def natural_keys(text):
60
+ '''
61
+ alist.sort(key=natural_keys) sorts in human order
62
+ http://nedbatchelder.com/blog/200712/human_sorting.html
63
+ (See Toothy's implementation in the comments)
64
+ '''
65
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
66
+
67
+
68
+ def get_model_state_file(checkpoint_dir, zero_stage):
69
+ if not os.path.isdir(checkpoint_dir):
70
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
71
+
72
+ # there should be only one file
73
+ if zero_stage <= 2:
74
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
75
+ elif zero_stage == 3:
76
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
77
+
78
+ if not os.path.exists(file):
79
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
80
+
81
+ return file
82
+
83
+
84
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
85
+ # XXX: need to test that this simple glob rule works for multi-node setup too
86
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
87
+
88
+ if len(ckpt_files) == 0:
89
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
90
+
91
+ return ckpt_files
92
+
93
+
94
+ def get_optim_files(checkpoint_dir):
95
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
96
+
97
+
98
+ def get_model_state_files(checkpoint_dir):
99
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
100
+
101
+
102
+ def parse_model_states(files):
103
+ zero_model_states = []
104
+ for file in files:
105
+ state_dict = torch.load(file, map_location=device, weights_only=False)
106
+
107
+ if BUFFER_NAMES not in state_dict:
108
+ raise ValueError(f"{file} is not a model state checkpoint")
109
+ buffer_names = state_dict[BUFFER_NAMES]
110
+ if debug:
111
+ print("Found buffers:", buffer_names)
112
+
113
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
114
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
115
+ param_shapes = state_dict[PARAM_SHAPES]
116
+
117
+ # collect parameters that are included in param_shapes
118
+ param_names = []
119
+ for s in param_shapes:
120
+ for name in s.keys():
121
+ param_names.append(name)
122
+
123
+ # update with frozen parameters
124
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
125
+ if frozen_param_shapes is not None:
126
+ if debug:
127
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
128
+ param_names += list(frozen_param_shapes.keys())
129
+
130
+ # handle shared params
131
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
132
+
133
+ ds_version = state_dict.get(DS_VERSION, None)
134
+
135
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
136
+
137
+ z_model_state = zero_model_state(buffers=buffers,
138
+ param_shapes=param_shapes,
139
+ shared_params=shared_params,
140
+ ds_version=ds_version,
141
+ frozen_param_shapes=frozen_param_shapes,
142
+ frozen_param_fragments=frozen_param_fragments)
143
+ zero_model_states.append(z_model_state)
144
+
145
+ return zero_model_states
146
+
147
+
148
+ def parse_optim_states(files, ds_checkpoint_dir):
149
+ total_files = len(files)
150
+ state_dicts = []
151
+ for f in tqdm(files, desc='Loading checkpoint shards'):
152
+ state_dict = torch.load(f, map_location=device, mmap=True, weights_only=False)
153
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
154
+ # and also handle the case where it was already removed by another helper script
155
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
156
+ state_dicts.append(state_dict)
157
+
158
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
159
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
160
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
161
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
162
+
163
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
164
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
165
+ # use the max of the partition_count to get the dp world_size.
166
+
167
+ if type(world_size) is list:
168
+ world_size = max(world_size)
169
+
170
+ if world_size != total_files:
171
+ raise ValueError(
172
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
173
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
174
+ )
175
+
176
+ # the groups are named differently in each stage
177
+ if zero_stage <= 2:
178
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
179
+ elif zero_stage == 3:
180
+ fp32_groups_key = FP32_FLAT_GROUPS
181
+ else:
182
+ raise ValueError(f"unknown zero stage {zero_stage}")
183
+
184
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
185
+ return zero_stage, world_size, fp32_flat_groups
186
+
187
+
188
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
189
+ """
190
+ Returns fp32 state_dict reconstructed from ds checkpoint
191
+
192
+ Args:
193
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
194
+
195
+ """
196
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
197
+
198
+ optim_files = get_optim_files(ds_checkpoint_dir)
199
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
200
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
201
+
202
+ model_files = get_model_state_files(ds_checkpoint_dir)
203
+
204
+ zero_model_states = parse_model_states(model_files)
205
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
206
+
207
+ if zero_stage <= 2:
208
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
209
+ exclude_frozen_parameters)
210
+ elif zero_stage == 3:
211
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
212
+ exclude_frozen_parameters)
213
+
214
+
215
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
216
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
217
+ return
218
+
219
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
220
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
221
+
222
+ if debug:
223
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
224
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
225
+
226
+ wanted_params = len(frozen_param_shapes)
227
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
228
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
229
+ print(f'Frozen params: Have {avail_numel} numels to process.')
230
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
231
+
232
+ total_params = 0
233
+ total_numel = 0
234
+ for name, shape in frozen_param_shapes.items():
235
+ total_params += 1
236
+ unpartitioned_numel = shape.numel()
237
+ total_numel += unpartitioned_numel
238
+
239
+ state_dict[name] = frozen_param_fragments[name]
240
+
241
+ if debug:
242
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
243
+
244
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
245
+
246
+
247
+ def _has_callable(obj, fn):
248
+ attr = getattr(obj, fn, None)
249
+ return callable(attr)
250
+
251
+
252
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
253
+ param_shapes = zero_model_states[0].param_shapes
254
+
255
+ # Reconstruction protocol:
256
+ #
257
+ # XXX: document this
258
+
259
+ if debug:
260
+ for i in range(world_size):
261
+ for j in range(len(fp32_flat_groups[0])):
262
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
263
+
264
+ # XXX: memory usage doubles here (zero2)
265
+ num_param_groups = len(fp32_flat_groups[0])
266
+ merged_single_partition_of_fp32_groups = []
267
+ for i in range(num_param_groups):
268
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
269
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
270
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
271
+ avail_numel = sum(
272
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
273
+
274
+ if debug:
275
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
276
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
277
+ # not asserting if there is a mismatch due to possible padding
278
+ print(f"Have {avail_numel} numels to process.")
279
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
280
+
281
+ # params
282
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
283
+ # out-of-core computing solution
284
+ total_numel = 0
285
+ total_params = 0
286
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
287
+ offset = 0
288
+ avail_numel = full_single_fp32_vector.numel()
289
+ for name, shape in shapes.items():
290
+
291
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
292
+ total_numel += unpartitioned_numel
293
+ total_params += 1
294
+
295
+ if debug:
296
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
297
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
298
+ offset += unpartitioned_numel
299
+
300
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
301
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
302
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
303
+ # live optimizer object, so we are checking that the numbers are within the right range
304
+ align_to = 2 * world_size
305
+
306
+ def zero2_align(x):
307
+ return align_to * math.ceil(x / align_to)
308
+
309
+ if debug:
310
+ print(f"original offset={offset}, avail_numel={avail_numel}")
311
+
312
+ offset = zero2_align(offset)
313
+ avail_numel = zero2_align(avail_numel)
314
+
315
+ if debug:
316
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
317
+
318
+ # Sanity check
319
+ if offset != avail_numel:
320
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
321
+
322
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
323
+
324
+
325
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
326
+ exclude_frozen_parameters):
327
+ state_dict = OrderedDict()
328
+
329
+ # buffers
330
+ buffers = zero_model_states[0].buffers
331
+ state_dict.update(buffers)
332
+ if debug:
333
+ print(f"added {len(buffers)} buffers")
334
+
335
+ if not exclude_frozen_parameters:
336
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
337
+
338
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
339
+
340
+ # recover shared parameters
341
+ for pair in zero_model_states[0].shared_params:
342
+ if pair[1] in state_dict:
343
+ state_dict[pair[0]] = state_dict[pair[1]]
344
+
345
+ return state_dict
346
+
347
+
348
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
349
+ remainder = unpartitioned_numel % world_size
350
+ padding_numel = (world_size - remainder) if remainder else 0
351
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
352
+ return partitioned_numel, padding_numel
353
+
354
+
355
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
356
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
357
+ return
358
+
359
+ if debug:
360
+ for i in range(world_size):
361
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
362
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
363
+
364
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
365
+ wanted_params = len(frozen_param_shapes)
366
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
367
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
368
+ print(f'Frozen params: Have {avail_numel} numels to process.')
369
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
370
+
371
+ total_params = 0
372
+ total_numel = 0
373
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
374
+ total_params += 1
375
+ unpartitioned_numel = shape.numel()
376
+ total_numel += unpartitioned_numel
377
+
378
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
379
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
380
+
381
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
382
+
383
+ if debug:
384
+ print(
385
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
386
+ )
387
+
388
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
389
+
390
+
391
+ class GatheredTensor:
392
+ """
393
+ A pseudo tensor that collects partitioned weights.
394
+ It is more memory efficient when there are multiple groups.
395
+ """
396
+
397
+ def __init__(self, flat_groups, flat_groups_offset, offset, partitioned_numel, shape):
398
+ self.flat_groups = flat_groups
399
+ self.flat_groups_offset = flat_groups_offset
400
+ self.offset = offset
401
+ self.partitioned_numel = partitioned_numel
402
+ self.shape = shape
403
+ self.dtype = self.flat_groups[0][0].dtype
404
+
405
+ def contiguous(self):
406
+ """
407
+ Merge partitioned weights from flat_groups into a single tensor.
408
+ """
409
+ end_idx = self.offset + self.partitioned_numel
410
+ world_size = len(self.flat_groups)
411
+ pad_flat_param_chunks = []
412
+
413
+ for rank_i in range(world_size):
414
+ # for each rank, we need to collect weights from related group/groups
415
+ flat_groups_at_rank_i = self.flat_groups[rank_i]
416
+ start_group_id = None
417
+ end_group_id = None
418
+ for group_id in range(len(self.flat_groups_offset)):
419
+ if self.flat_groups_offset[group_id] <= self.offset < self.flat_groups_offset[group_id + 1]:
420
+ start_group_id = group_id
421
+ if self.flat_groups_offset[group_id] < end_idx <= self.flat_groups_offset[group_id + 1]:
422
+ end_group_id = group_id
423
+ break
424
+ # collect weights from related group/groups
425
+ for group_id in range(start_group_id, end_group_id + 1):
426
+ flat_tensor = flat_groups_at_rank_i[group_id]
427
+ start_offset = self.offset - self.flat_groups_offset[group_id]
428
+ end_offset = min(end_idx, self.flat_groups_offset[group_id + 1]) - self.flat_groups_offset[group_id]
429
+ pad_flat_param_chunks.append(flat_tensor[start_offset:end_offset])
430
+
431
+ # collect weights from all ranks
432
+ pad_flat_param = torch.cat(pad_flat_param_chunks, dim=0)
433
+ param = pad_flat_param[:self.shape.numel()].view(self.shape).contiguous()
434
+ return param
435
+
436
+
437
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
438
+ param_shapes = zero_model_states[0].param_shapes
439
+ avail_numel = sum([flat_group.numel() for flat_group in fp32_flat_groups[0]]) * world_size
440
+
441
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
442
+ # param, re-consolidating each param, while dealing with padding if any
443
+
444
+ # merge list of dicts, preserving order
445
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
446
+
447
+ if debug:
448
+ for i in range(world_size):
449
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
450
+
451
+ wanted_params = len(param_shapes)
452
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
453
+ # not asserting if there is a mismatch due to possible padding
454
+ avail_numel = fp32_flat_groups[0].numel() * world_size
455
+ print(f"Trainable params: Have {avail_numel} numels to process.")
456
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
457
+
458
+ # params
459
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
460
+ # out-of-core computing solution
461
+ offset = 0
462
+ total_numel = 0
463
+ total_params = 0
464
+ flat_groups_offset = [0] + list(np.cumsum([flat_tensor.numel() for flat_tensor in fp32_flat_groups[0]]))
465
+ for name, shape in tqdm(param_shapes.items(), desc='Gathering sharded weights'):
466
+ unpartitioned_numel = shape.numel()
467
+ total_numel += unpartitioned_numel
468
+ total_params += 1
469
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
470
+
471
+ if debug:
472
+ print(
473
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
474
+ )
475
+
476
+ # memory efficient tensor
477
+ tensor = GatheredTensor(fp32_flat_groups, flat_groups_offset, offset, partitioned_numel, shape)
478
+ state_dict[name] = tensor
479
+ offset += partitioned_numel
480
+
481
+ offset *= world_size
482
+
483
+ # Sanity check
484
+ if offset != avail_numel:
485
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
486
+
487
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
488
+
489
+
490
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
491
+ exclude_frozen_parameters):
492
+ state_dict = OrderedDict()
493
+
494
+ # buffers
495
+ buffers = zero_model_states[0].buffers
496
+ state_dict.update(buffers)
497
+ if debug:
498
+ print(f"added {len(buffers)} buffers")
499
+
500
+ if not exclude_frozen_parameters:
501
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
502
+
503
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
504
+
505
+ # recover shared parameters
506
+ for pair in zero_model_states[0].shared_params:
507
+ if pair[1] in state_dict:
508
+ state_dict[pair[0]] = state_dict[pair[1]]
509
+
510
+ return state_dict
511
+
512
+
513
+ def to_torch_tensor(state_dict, return_empty_tensor=False):
514
+ """
515
+ Convert state_dict of GatheredTensor to torch tensor
516
+ """
517
+ torch_state_dict = {}
518
+ converted_tensors = {}
519
+ for name, tensor in state_dict.items():
520
+ tensor_id = id(tensor)
521
+ if tensor_id in converted_tensors: # shared tensors
522
+ shared_tensor = torch_state_dict[converted_tensors[tensor_id]]
523
+ torch_state_dict[name] = shared_tensor
524
+ else:
525
+ converted_tensors[tensor_id] = name
526
+ if return_empty_tensor:
527
+ torch_state_dict[name] = torch.empty(tensor.shape, dtype=tensor.dtype)
528
+ else:
529
+ torch_state_dict[name] = tensor.contiguous()
530
+ return torch_state_dict
531
+
532
+
533
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
534
+ tag=None,
535
+ exclude_frozen_parameters=False,
536
+ lazy_mode=False):
537
+ """
538
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
539
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
540
+ via a model hub.
541
+
542
+ Args:
543
+ - ``checkpoint_dir``: path to the desired checkpoint folder
544
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
545
+ - ``exclude_frozen_parameters``: exclude frozen parameters
546
+ - ``lazy_mode``: get state_dict in lazy mode. It returns a dict of pesduo tensor instead of torch tensor, which is more memory efficient.
547
+ Convert the pesduo tensor to torch tensor by ``.contiguous()``
548
+
549
+ Returns:
550
+ - pytorch ``state_dict``
551
+
552
+ A typical usage might be ::
553
+
554
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
555
+ # do the training and checkpoint saving
556
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
557
+ model = model.cpu() # move to cpu
558
+ model.load_state_dict(state_dict)
559
+ # submit to model hub or save the model to share with others
560
+
561
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
562
+ application. i.e. you will need to re-initialize the deepspeed engine, since
563
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
564
+
565
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
566
+
567
+ Note: the above usage may not work if your application doesn't have sufficient free CPU memory.
568
+ You may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
569
+ the checkpoint. Or you can load state_dict in lazy mode ::
570
+
571
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
572
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, lazy_mode=True) # not on cpu
573
+ for name, lazy_tensor in state_dict.item():
574
+ tensor = lazy_tensor.contiguous() # to cpu
575
+ print(name, tensor)
576
+ # del tensor to release memory if it no longer in use
577
+ """
578
+ if tag is None:
579
+ latest_path = os.path.join(checkpoint_dir, 'latest')
580
+ if os.path.isfile(latest_path):
581
+ with open(latest_path, 'r') as fd:
582
+ tag = fd.read().strip()
583
+ else:
584
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
585
+
586
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
587
+
588
+ if not os.path.isdir(ds_checkpoint_dir):
589
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
590
+
591
+ state_dict = _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
592
+ if lazy_mode:
593
+ return state_dict
594
+ else:
595
+ return to_torch_tensor(state_dict)
596
+
597
+
598
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir,
599
+ output_dir,
600
+ max_shard_size="5GB",
601
+ safe_serialization=False,
602
+ tag=None,
603
+ exclude_frozen_parameters=False):
604
+ """
605
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
606
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
607
+
608
+ Args:
609
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
610
+ - ``output_dir``: directory to the pytorch fp32 state_dict output files
611
+ - ``max_shard_size``: the maximum size for a checkpoint before being sharded, default value is 5GB
612
+ - ``safe_serialization``: whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).
613
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
614
+ - ``exclude_frozen_parameters``: exclude frozen parameters
615
+ """
616
+
617
+ # Dependency pre-check
618
+ if safe_serialization:
619
+ try:
620
+ from safetensors.torch import save_file
621
+ except ImportError:
622
+ print('If you want to use `safe_serialization`, please `pip install safetensors`')
623
+ raise
624
+ if max_shard_size is not None:
625
+ try:
626
+ from huggingface_hub import split_torch_state_dict_into_shards
627
+ except ImportError:
628
+ print('If you want to use `max_shard_size`, please `pip install huggingface_hub`')
629
+ raise
630
+
631
+ # Convert zero checkpoint to state_dict
632
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir,
633
+ tag,
634
+ exclude_frozen_parameters,
635
+ lazy_mode=True)
636
+
637
+ # Shard the model if it is too big.
638
+ weights_name = "model.safetensors" if safe_serialization else "pytorch_model.bin"
639
+ if max_shard_size is not None:
640
+ filename_pattern = weights_name.replace(".bin", "{suffix}.bin").replace(".safetensors", "{suffix}.safetensors")
641
+ # an memory-efficient approach for sharding
642
+ empty_state_dict = to_torch_tensor(state_dict, return_empty_tensor=True)
643
+ state_dict_split = split_torch_state_dict_into_shards(empty_state_dict,
644
+ filename_pattern=filename_pattern,
645
+ max_shard_size=max_shard_size)
646
+ else:
647
+ from collections import namedtuple
648
+ StateDictSplit = namedtuple("StateDictSplit", ["is_sharded", "filename_to_tensors"])
649
+ state_dict_split = StateDictSplit(is_sharded=False,
650
+ filename_to_tensors={weights_name: list(state_dict.keys())})
651
+
652
+ # Save the model by shard
653
+ os.makedirs(output_dir, exist_ok=True)
654
+ filename_to_tensors = state_dict_split.filename_to_tensors.items()
655
+ for shard_file, tensors in tqdm(filename_to_tensors, desc="Saving checkpoint shards"):
656
+ shard_state_dict = {tensor_name: state_dict[tensor_name] for tensor_name in tensors}
657
+ shard_state_dict = to_torch_tensor(shard_state_dict)
658
+ output_path = os.path.join(output_dir, shard_file)
659
+ if safe_serialization:
660
+ save_file(shard_state_dict, output_path, metadata={"format": "pt"})
661
+ else:
662
+ torch.save(shard_state_dict, output_path)
663
+ # release the memory of current shard
664
+ for tensor_name in list(shard_state_dict.keys()):
665
+ del state_dict[tensor_name]
666
+ del shard_state_dict[tensor_name]
667
+ del shard_state_dict
668
+ gc.collect()
669
+
670
+ # Save index if sharded
671
+ if state_dict_split.is_sharded:
672
+ index = {
673
+ "metadata": state_dict_split.metadata,
674
+ "weight_map": state_dict_split.tensor_to_filename,
675
+ }
676
+ save_index_file = "model.safetensors.index.json" if safe_serialization else "pytorch_model.bin.index.json"
677
+ save_index_file = os.path.join(output_dir, save_index_file)
678
+ with open(save_index_file, "w", encoding="utf-8") as f:
679
+ content = json.dumps(index, indent=2, sort_keys=True) + "\n"
680
+ f.write(content)
681
+
682
+
683
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
684
+ """
685
+ 1. Put the provided model to cpu
686
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
687
+ 3. Load it into the provided model
688
+
689
+ Args:
690
+ - ``model``: the model object to update
691
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
692
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
693
+
694
+ Returns:
695
+ - ``model`: modified model
696
+
697
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
698
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
699
+ conveniently placed for you in the checkpoint folder.
700
+
701
+ A typical usage might be ::
702
+
703
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
704
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
705
+ # submit to model hub or save the model to share with others
706
+
707
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
708
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
709
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
710
+
711
+ """
712
+ logger.info(f"Extracting fp32 weights")
713
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
714
+
715
+ logger.info(f"Overwriting model with fp32 weights")
716
+ model = model.cpu()
717
+ model.load_state_dict(state_dict, strict=False)
718
+
719
+ return model
720
+
721
+
722
+ if __name__ == "__main__":
723
+ parser = argparse.ArgumentParser()
724
+ parser.add_argument("checkpoint_dir",
725
+ type=str,
726
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
727
+ parser.add_argument("output_dir",
728
+ type=str,
729
+ help="directory to the pytorch fp32 state_dict output files"
730
+ "(e.g. path/checkpoint-12-output/)")
731
+ parser.add_argument(
732
+ "--max_shard_size",
733
+ type=str,
734
+ default="5GB",
735
+ help="The maximum size for a checkpoint before being sharded. Checkpoints shard will then be each of size"
736
+ "lower than this size. If expressed as a string, needs to be digits followed by a unit (like `5MB`"
737
+ "We default it to 5GB in order for models to be able to run easily on free-tier google colab instances"
738
+ "without CPU OOM issues.")
739
+ parser.add_argument(
740
+ "--safe_serialization",
741
+ default=False,
742
+ action='store_true',
743
+ help="Whether to save the model using `safetensors` or the traditional PyTorch way (that uses `pickle`).")
744
+ parser.add_argument("-t",
745
+ "--tag",
746
+ type=str,
747
+ default=None,
748
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
749
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
750
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
751
+ args = parser.parse_args()
752
+
753
+ debug = args.debug
754
+
755
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
756
+ args.output_dir,
757
+ max_shard_size=args.max_shard_size,
758
+ safe_serialization=args.safe_serialization,
759
+ tag=args.tag,
760
+ exclude_frozen_parameters=args.exclude_frozen_parameters)