Upload example_usage.py with huggingface_hub
Browse files- example_usage.py +97 -0
example_usage.py
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Example usage of Ultimate V2 Chess Board Segmentation ONNX model
|
| 3 |
+
"""
|
| 4 |
+
|
| 5 |
+
import onnxruntime as ort
|
| 6 |
+
import numpy as np
|
| 7 |
+
import cv2
|
| 8 |
+
import matplotlib.pyplot as plt
|
| 9 |
+
|
| 10 |
+
def load_model(model_path):
|
| 11 |
+
"""Load ONNX model"""
|
| 12 |
+
session = ort.InferenceSession(model_path)
|
| 13 |
+
return session
|
| 14 |
+
|
| 15 |
+
def preprocess_image(image_path):
|
| 16 |
+
"""Preprocess image for model input"""
|
| 17 |
+
# Load image
|
| 18 |
+
image = cv2.imread(image_path)
|
| 19 |
+
image_rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 20 |
+
|
| 21 |
+
# Resize to model input size
|
| 22 |
+
image_resized = cv2.resize(image_rgb, (256, 256))
|
| 23 |
+
|
| 24 |
+
# Normalize to [0, 1]
|
| 25 |
+
image_normalized = image_resized.astype(np.float32) / 255.0
|
| 26 |
+
|
| 27 |
+
# Convert to model input format (NCHW)
|
| 28 |
+
input_tensor = np.transpose(image_normalized, (2, 0, 1))[np.newaxis, ...]
|
| 29 |
+
|
| 30 |
+
return input_tensor, image_rgb
|
| 31 |
+
|
| 32 |
+
def run_inference(session, input_tensor):
|
| 33 |
+
"""Run inference on the model"""
|
| 34 |
+
# Get input name
|
| 35 |
+
input_name = session.get_inputs()[0].name
|
| 36 |
+
|
| 37 |
+
# Run inference
|
| 38 |
+
outputs = session.run(None, {input_name: input_tensor})
|
| 39 |
+
|
| 40 |
+
# Apply sigmoid to get probabilities
|
| 41 |
+
mask = 1.0 / (1.0 + np.exp(-outputs[0]))
|
| 42 |
+
|
| 43 |
+
return mask.squeeze()
|
| 44 |
+
|
| 45 |
+
def visualize_results(original_image, mask, threshold=0.5):
|
| 46 |
+
"""Visualize the segmentation results"""
|
| 47 |
+
# Create binary mask
|
| 48 |
+
binary_mask = (mask > threshold).astype(np.uint8) * 255
|
| 49 |
+
|
| 50 |
+
# Create overlay
|
| 51 |
+
overlay = original_image.copy()
|
| 52 |
+
overlay[binary_mask > 0] = [255, 0, 0] # Red overlay
|
| 53 |
+
|
| 54 |
+
# Plot results
|
| 55 |
+
fig, axes = plt.subplots(1, 4, figsize=(16, 4))
|
| 56 |
+
|
| 57 |
+
axes[0].imshow(original_image)
|
| 58 |
+
axes[0].set_title('Original Image')
|
| 59 |
+
axes[0].axis('off')
|
| 60 |
+
|
| 61 |
+
axes[1].imshow(mask, cmap='hot')
|
| 62 |
+
axes[1].set_title('Segmentation Heatmap')
|
| 63 |
+
axes[1].axis('off')
|
| 64 |
+
|
| 65 |
+
axes[2].imshow(binary_mask, cmap='gray')
|
| 66 |
+
axes[2].set_title('Binary Mask')
|
| 67 |
+
axes[2].axis('off')
|
| 68 |
+
|
| 69 |
+
axes[3].imshow(overlay)
|
| 70 |
+
axes[3].set_title('Overlay')
|
| 71 |
+
axes[3].axis('off')
|
| 72 |
+
|
| 73 |
+
plt.tight_layout()
|
| 74 |
+
plt.show()
|
| 75 |
+
|
| 76 |
+
def main():
|
| 77 |
+
"""Main example function"""
|
| 78 |
+
# Load model
|
| 79 |
+
model_path = "ultimate_v2_breakthrough_accurate.onnx"
|
| 80 |
+
session = load_model(model_path)
|
| 81 |
+
|
| 82 |
+
# Process image
|
| 83 |
+
image_path = "chess_board.jpg" # Replace with your image
|
| 84 |
+
input_tensor, original_image = preprocess_image(image_path)
|
| 85 |
+
|
| 86 |
+
# Run inference
|
| 87 |
+
mask = run_inference(session, input_tensor)
|
| 88 |
+
|
| 89 |
+
# Visualize results
|
| 90 |
+
visualize_results(original_image, mask)
|
| 91 |
+
|
| 92 |
+
print(f"✅ Chess board segmentation completed!")
|
| 93 |
+
print(f"📊 Mask shape: {mask.shape}")
|
| 94 |
+
print(f"📈 Mask range: {mask.min():.3f} - {mask.max():.3f}")
|
| 95 |
+
|
| 96 |
+
if __name__ == "__main__":
|
| 97 |
+
main()
|